

Postbus 68 | 1970 AB IJmuiden

Ministerie van Infrastructuur en Waterstaat
Rijkswaterstaat Water, Verkeer en Leefomgeving
T.a.v. Jakob Asjes en Rens Cronau
Griffioenlaan 2
3526 LA Utrecht

Authors: Geert Aarts, Sophie Brasseur & Jessica Schop

Hinterland analysis: Is the onshore distribution of harbour seals regulated by offshore habitat quality?

This report represents a summary of the key results and conclusions. Additional details can be found in the appendix and supplementary material. The appendix includes a more technical scientific manuscript intended for publication in a peer-reviewed academic journal. The supplementary material includes the R-code used for the analysis and habitat-based distribution maps used for the Hinterland analysis.

Funded by:

NOORDZEEOVERLEG

**Co-funded by
the European Union**

DATE
15 May 2025

SUBJECT
Letter report

OUR REFERENCE
XXX

POSTAL ADDRESS
Postbus 68
1970 AB IJmuiden

VISITORS' ADDRESS
Haringkade 1
1976 CP IJmuiden

INTERNET
www.wur.nl/marine-research

CoC NUMBER
09098104

HANDLED BY
Geert Aarts

TELEPHONE
+31 (0) 6 30462385

EMAIL
geert.aarts@wur.nl

With knowledge, independent scientific research and advice, Wageningen Marine Research substantially contributes to more sustainable and more careful management, use and protection of natural riches in marine, coastal and freshwater areas.

Wageningen Marine Research is part of Wageningen University & Research. Wageningen University & Research is the collaboration between Wageningen University and the Wageningen Research Foundation and its mission is: 'To explore the potential for improving the quality of life'

Uitgebreide Nederlandse samenvatting

Zeezoogdieren zijn van groot belang in de Noordzee, aangezien ze als roofdieren aan de top van de voedselketen staan. Eén van de onderzoeks vragen binnen het MONS-programma is daarom ook om te achterhalen in hoeverre de toenemende menselijke activiteiten op zee kunnen leiden tot een verandering van de ecologische draagkracht en zo de populatieomvang van zeezoogdieren kan beïnvloeden. De vraag is echter óf de beschikbaarheid en kwaliteit van foerageergebieden een directe invloed heeft op de populaties van de verschillende soorten en op welke manier? Het doel van dit onderzoek is om beter te begrijpen in hoeverre de aantallen gewone en grijze zeehonden worden beïnvloed door de beschikbaarheid en kwaliteit van geschikt foerageergebied. Als deze relatie namelijk kan worden vastgesteld, kan deze in de toekomst gebruikt worden om te onderzoeken in welke mate menselijke activiteiten op de Noordzee de kwaliteit van foerageergebieden, en daarmee de draagkracht voor de verschillende soorten beïnvloeden.

Voor dit onderzoek wordt de verspreiding van de gewone en grijze zeehonden op zee bepaald op basis GPS-zenderdata gemodelleerd als functie van omgevingsvariabelen afstand tot de ligplaats, diepte, sediment samenstelling en topografische kenmerken, zoals zandruggen en geulen in de Noordzee. Tevens wordt onderzocht in welke mate zeehonden foerageren binnen dat gebied wat het dichts bij hun vertrek- en aankomstligplaats ligt (de 'Hinterland' horende bij hun ligplaats), of dat ze ook de hinterlandsgrenzen oversteken en dichter in de buurt van andere ligplaatsen foerageren. Vervolgens wordt dit habitatmodel gebruikt om voor elke plek op zee te bepalen wat de relatieve kwaliteit is van dat gebied en hoeveel zeehonden zich daar gemiddeld bevinden, en wordt met deze geschatte dichtheid een voorspelling gemaakt van het aantal zeehonden op de nabijgelegen ligplaatsen. Deze voorspellingen van aantallen op de ligplaatsen worden vervolgens vergeleken met vliegtuigtellingen uit de internationale Waddenzee en de Delta in het zuiden van Nederland.

De resultaten laten een significante correlatie zien tussen de voorspelde aantallen en de getelde aantallen voor zowel grijze als gewone zeehonden. Toch zijn er enkele interessante afwijkingen. Op de locaties die bekend zijn als belangrijke geboortegebieden voor gewone zeehonden, zoals het grensgebied tussen de Nederlandse en Duitse Waddenzee en Schleswig-Holstein, worden veel meer dieren geteld dan verwacht op basis van het habitatmodel. Tijdens de voortplanting migreren dieren naar die gebieden toe en het is aannemelijk dat ze zich pas na de verharing in augustus herverdelen conform de beschikbaarheid van foerageergebieden. Ook zijn er plekken waar minder dieren worden waargenomen dan voorspeld, zoals met name in het Deltagebied. De gewone zeehonden in dit gebied waren rond 1990 nog enigszins verdwenen en hun aantal groeit nog steeds. Waarschijnlijk hebben de gewone zeehonden de beschikbare foerageergebieden nog niet helemaal opgevuld. Voor grijze zeehonden is er ook een significante relatie tussen de vliegtuigtellingen en de voorspellingen op basis van het habitatmodel. Echter grijze zeehonden zijn veel meer geclusterd op een beperkt aantal ligplaatsen, vooral in de Nederlandse wateren, terwijl het model voorspelt dat er ook veel grijze zeehonden in de andere delen van de Waddenzee zouden moeten bevinden. Ook voor de grijze zeehond kan het zijn dat de beschikbare foerageergebieden nog niet helemaal zijn opgevuld. Mogelijk komt dit door de nabijheid van deze gebieden t.o.v. het Verenigd Koninkrijk, waar de bronpopulatie zicht bevindt. Verder onderzoek zou kunnen uitwijzen of competitie tussen de grijze en de gewone zeehonden hier ook een rol speelt.

Wanneer voor ieder deelgebied (de Delta, Nederland, Niedersachsen, Schleswig-Holstein en Denemarken) de aantallen bij elkaar worden opgeteld, dan kan men de

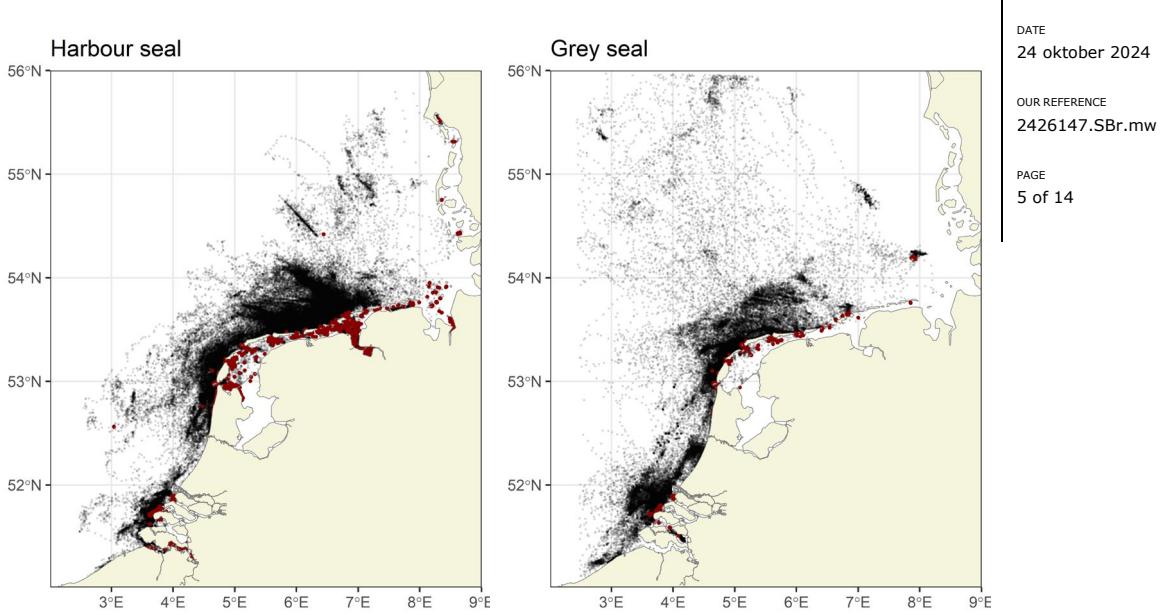
draagkracht op basis van het habitatmodel schatten. Deze komt redelijk overeen met het maximaal aantal getelde dieren per deelgebied. Echter, dit wijkt af voor Schleswig-Holstein waar relatief veel jongen geboren worden. Zoals hierboven geschat wordt, kan het zijn dat de dieren tijdens de telling in augustus nog niet zijn terug gemigreerd. Voor het Deltagebied is de geschatte draagkracht juist veel hoger dan de augustus tellingen. Deze populatie groeit echter nog steeds. Daarnaast worden hier juist relatief weinig jongen geboren. Een deel van de dieren is mogelijk in augustus nog in de Waddenzee. Ook is dit gebied, in de nabijheid van de haven van Rotterdam, een van de drukste gebieden van de Noordzee, en zou verstoring door menselijke activiteiten een rol kunnen spelen.

DATE
24 oktober 2024

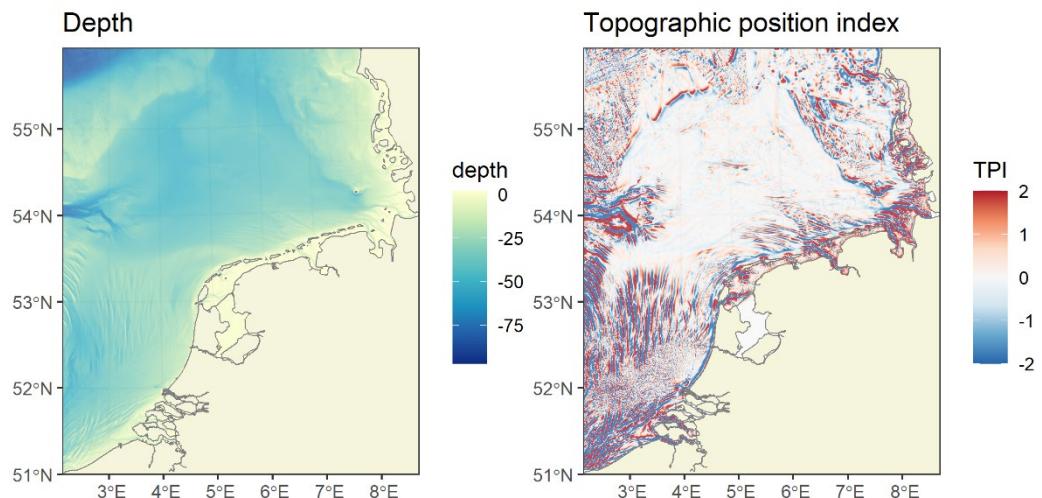
OUR REFERENCE
2426147.SBr.mw

PAGE
3 of 14

Als voorlopige conclusie kan worden gesteld dat het haalbaar is om, op basis van de verspreiding van habitattypes op zee, de aantallen zeehonden op het land en hun lokale verspreiding te voorspellen. Daarmee kunnen tevens voorzichtige uitspraken worden gedaan over regionale draagkracht voor zeehonden. Desalniettemin zijn er nog steeds aanzienlijke regionale afwijkingen tussen de voorspelde en waargenomen aantallen. Deze afwijkingen bieden interessante aanknopingspunten voor toekomstig onderzoek. Bijvoorbeeld, wanneer tellingsgegevens uit de foerageerperiodes worden verzameld (voor de gewone zeehonden de wintermaanden, in plaats van de huidige augustus - rui tellingen), blijken dan dat de voorspellingen minder af te wijken van de waargenomen aantallen? Kan men dan stellen dat dieren zich na de rui in augustus andere ligplaatsen kiezen en zich verder verdelen over het beschikbare foerageergebied? Wordt de waargenomen verdeling van gewone zeehonden lokaal mede beïnvloed door competitie met grijze zeehonden, of bruinvissen?


Het huidige model is gebaseerd op omgevingsfactoren zoals bodemtype en diepte. De analyse kan in de toekomst worden uitgebreid door effecten van menselijke activiteiten op de verspreiding mee te nemen. Dit creëert mogelijkheden om te schatten wat de invloed van deze activiteiten is op de kwaliteit van foerageergebieden en hoe zich dat door zou kunnen vertalen op de omvang van de populatie. Daarnaast is het mogelijk om scenario's te simuleren waarbij de hier genoemde methode kan worden toegepast om vast te stellen waar menselijke activiteiten de grootste invloed hebben op de zeehondenpopulatie.

Briefing report


Marine mammals play a critical role in the North Sea ecosystem. The most abundant marine mammal species in these waters are the harbour seal (*Phoca vitulina*), grey seal (*Halichoerus grypus*) and harbour porpoise (*Phocoena phocoena*). These species occupy the top of the food chain and thus exert an important influence on the abundance and distribution of lower-trophic-level species within the North Sea food web. However, the rise in human activities in the North Sea, including the construction of offshore wind farms and shipping, may compromise the regulatory role of marine mammals by changing both the overall availability and the quality of their foraging areas. One of the research questions within the MONS program is to determine the extent to which increasing human activities at sea can lead to a change in the ecological carrying capacity and population size of marine mammals. To address this question, it is first necessary to determine if the availability and quality of foraging areas at-sea is a driving factor of population size. Once this relationship can be established, it could potentially be employed in the future to investigate if natural or human-driven changes of habitats in the North Sea, may lead to changes in the carrying capacity of the different species.

Within Dutch coastal waters, well studied marine mammal species are the harbour seal and grey seal. A large amount of historical transmitter data is available that can be used to map the at-sea distribution of these species. In addition, systematic counts of numbers on land have been carried out since the 1960s, which have not only provided insights into the historical development of population size, but these data can also be used to identify where most individuals can be found resting in the Wadden Sea. The aim of this research project is to determine the habitat quality of various areas in the North Sea, and then to investigate to what extent the location, surface area and quality of these foraging areas influence the number of animals observed on land and the size of the population in the various sub-areas of the Dutch Delta and the international Wadden Sea.

For this study, GPS tracking data were used to model the density of harbour seals (Fig. 1, left) and grey seals (Fig. 1, right) at sea as a function of environmental variables such as distance to the haul-out, depth (Fig. 2, left), sediment composition and topographic features, such as sand ridges and channels (Fig. 2, right). We also investigated to what extent seals forage exclusively within the 'Hinterland' (i.e. the area of space closest to a specific haul-out site), or whether they also cross Hinterland borders and forage closer to other haul-out sites. The fitted habitat model and estimated degree of spatial segregation was then used to determine the relative quality of each location at-sea, and the estimated density of seals was subsequently distributed over the nearby haul-out sites.

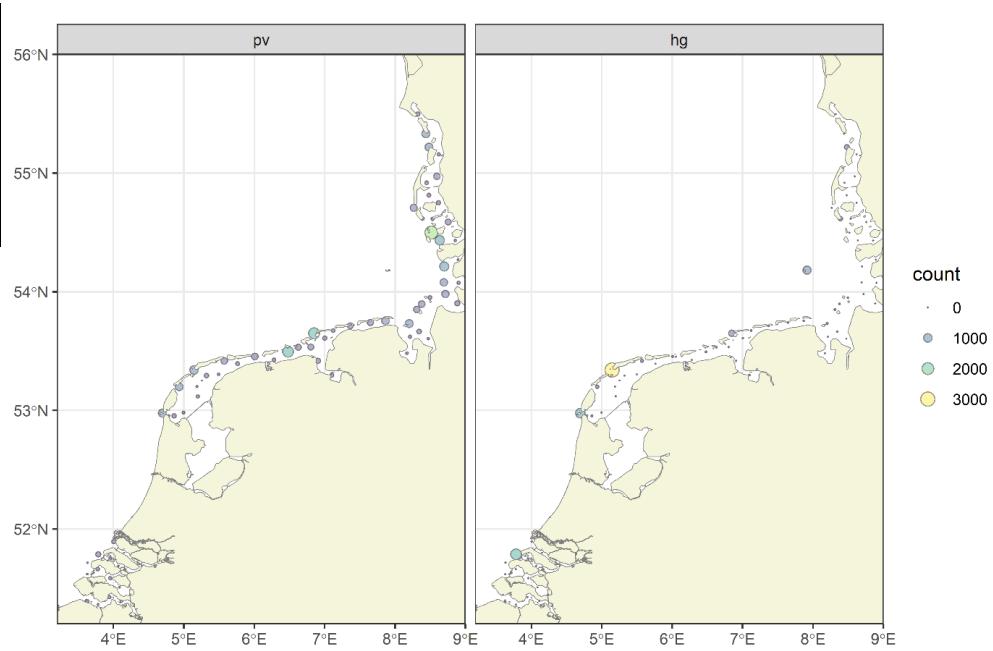
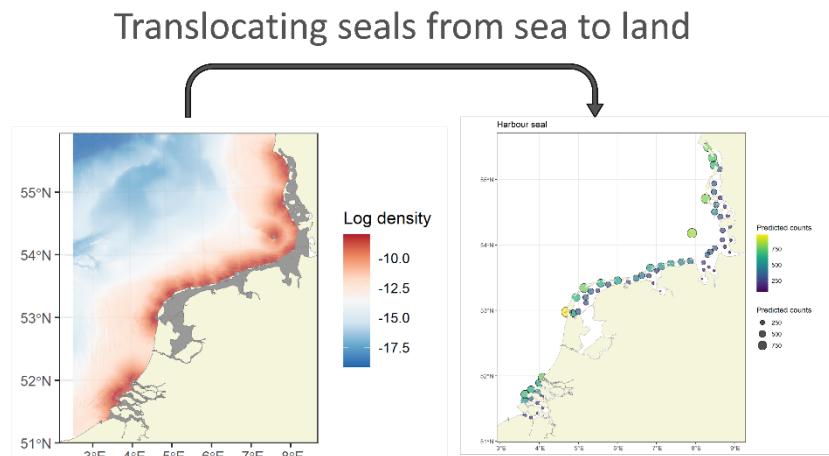


Figure 1. The GPS transmitter data (black) used in this analysis. Haul-out locations are shown in dark red.


Figure 2. Two environmental variables used in this study. Left: Depth (in m). Right: Topographic position index. Values greater than 0 refer to ridges or peaks in the underwater landscape. Values less than 0 refer to troughs or channels.

The habitat-model derived from GPS tracking data can be used to predict the number of seals at the different haul-out sites. Aerial survey count data were used to compare with the model predictions. Here, counts were used from the entire international Wadden Sea, which encompasses the Netherlands, Lower Saxony and Schleswig-Holstein in Germany, and Denmark. Additionally, we obtained count data from the Dutch province Zeeland (Fig. 3). If data were available for multiple years, we used the average of the moult counts collected in the past 10 years (2014-2023). For Denmark, the only moult count at the haul-out level that is currently available was from 2017.

Figure 3. Distribution on land of the number of harbour seals (pv) in August (left) as well as the number of grey seals (hg) in March and April (right). The numbers counted on nearby haul-out sites are clustered to limit overlap in the symbols.

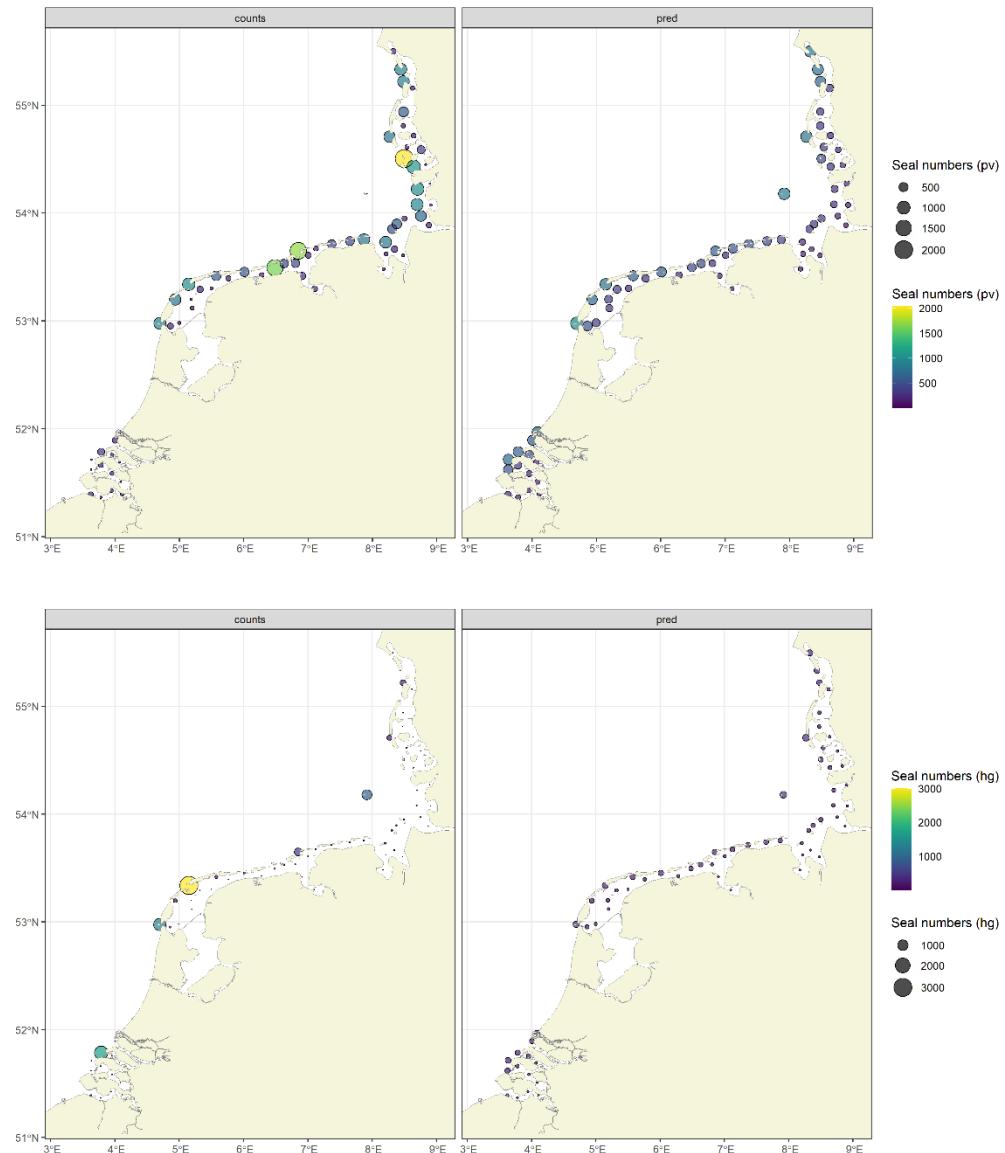
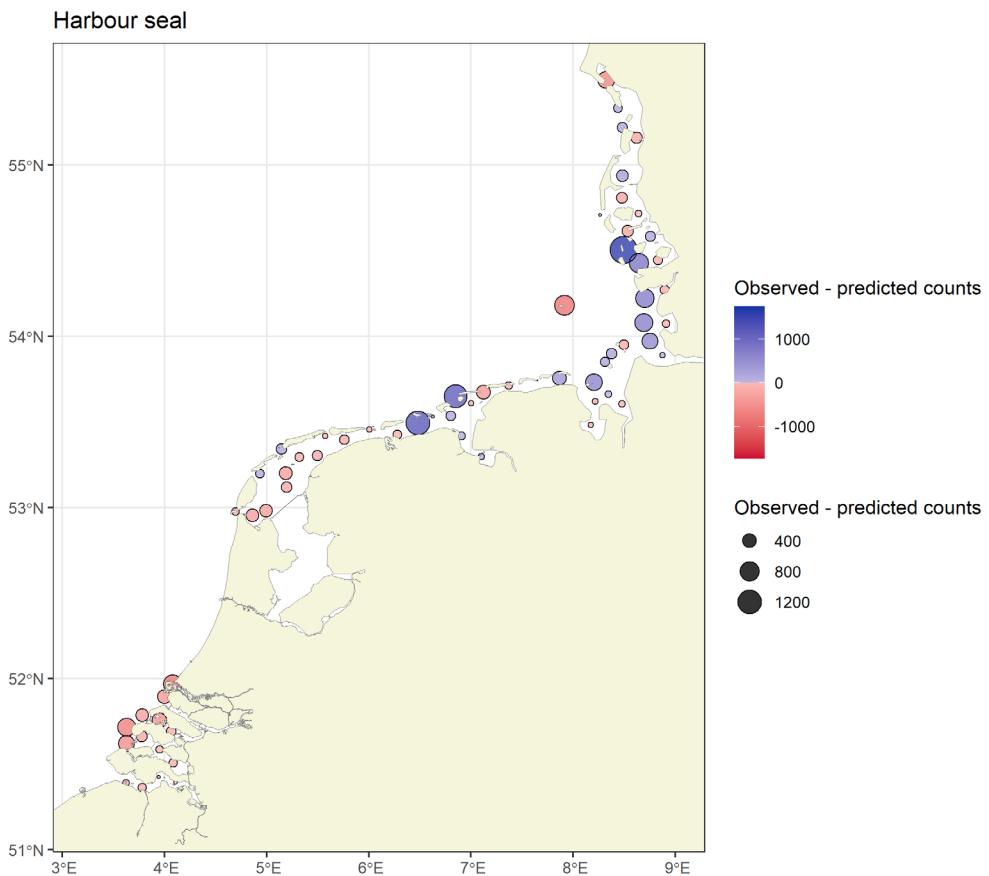

The habitat model that was developed using transmitter data shows that harbour seals exhibit a strong preference for areas that are relatively close to their resting places. This can be attributed to the fact that foraging habitats closer to the haul-out require less travel time, as well as the fact seals must always cross nearby areas in order to reach foraging habitats further offshore. Harbour seals also show a preference for foraging areas that are located at a depth of less than 20 meters, and they are less likely to be found in areas that are much deeper. Furthermore, they often choose areas that contain a low mud fraction and exhibit a slight preference for areas that are situated within channels and gullies, or on ridges and peaks. Areas that are flat are less likely to be used. Grey seals exhibit a similar preferential selection for environmental variables to harbour seals, although they occasionally make longer and more distant foraging trips and their preference for peaks and ridges is more pronounced. This model can be used to determine the habitat suitability for each location at sea and to estimate the density of seals at sea (shown for harbour seals in Fig. 4).

Figure 4. The relative distribution of harbour seals based on distance to the nearest haul-out site (left), used to translocate seals onto the known haul-out sites

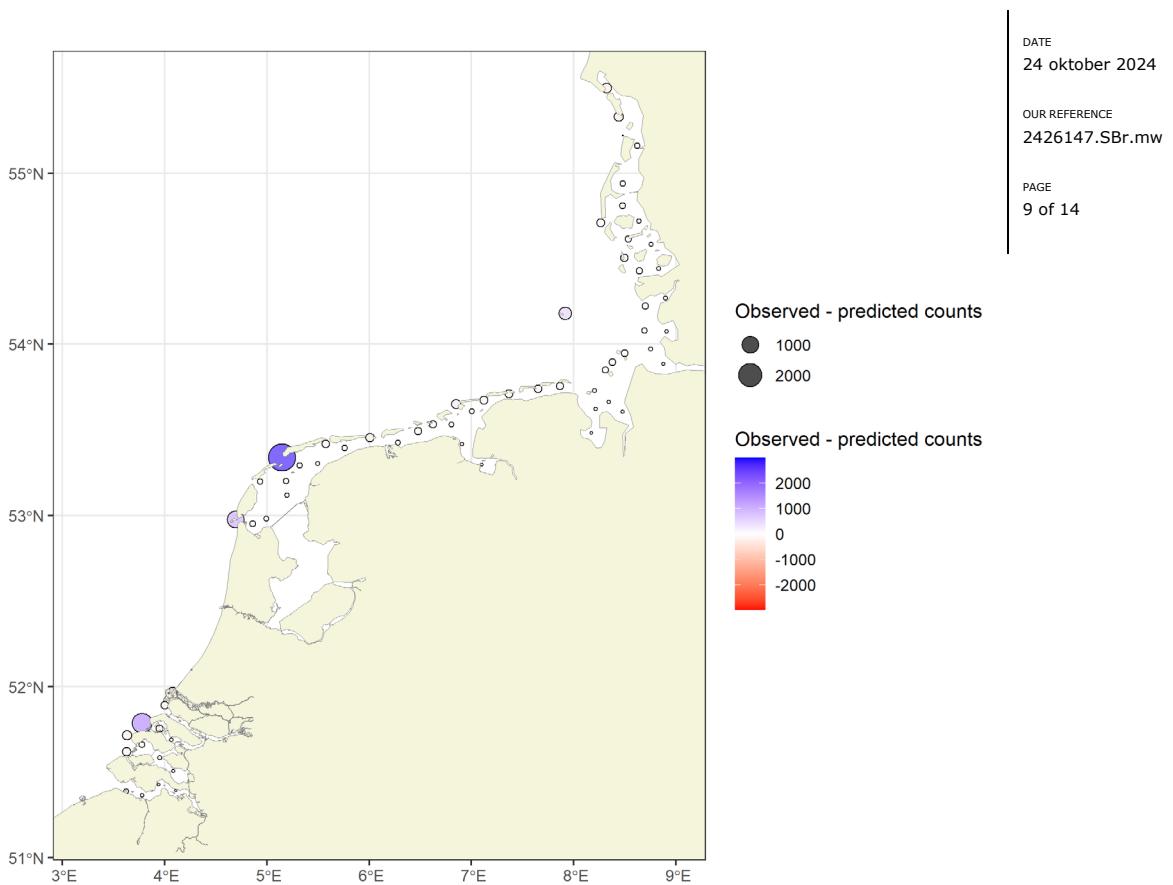
The habitat model allows for an estimation of the numbers of resting seals across the available haul-out sites, revealing a significant correlation between predicted and observed numbers of harbour seal (Fig. 5).


DATE
24 oktober 2024

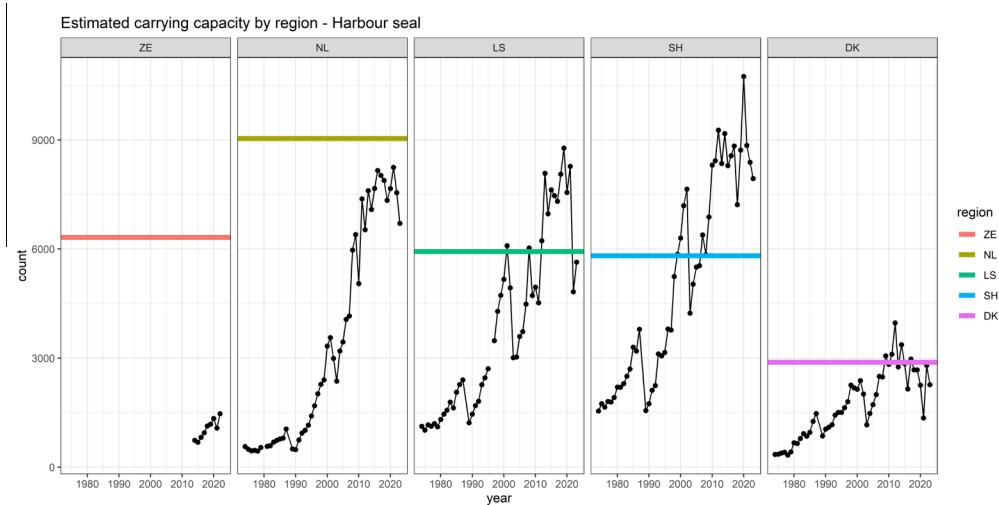
OUR REFERENCE
2426147.SBr.mw

PAGE
7 of 14

Figure 5. Observed numbers of harbour seals (top panels) and grey seals (bottom panels) based on aircraft counts (left panels) and predicted numbers of the habitat model (right panels).


Notably, there are some interesting deviations (Fig. 6 and Fig. 7). In key breeding regions, such as the border area between the Dutch and German Wadden Sea and Schleswig-Holstein, observed harbour seal counts exceed model predictions. It is plausible that the distribution of harbour seals observed during the moult counts in August may not yet be completely aligned with their haul-out distribution during the foraging season. In other regions, such as the Dutch Delta region in Zeeland, the model predictions exceed the aerial survey counts. The population of harbour seals in this region is still growing, and it is likely that the population has not fully occupied the available foraging areas. Additionally, competition may exist with other predators,

particularly among other marine mammal species like grey seals and harbour porpoises. Competition may also explain the under-representation of harbour seals on Helgoland.


Figure 6. The discrepancy between the observed counts of harbour seals during aerial surveys and the predicted numbers derived from the habitat model. Blue points are clusters of resting places where relatively more animals are observed than predicted based on the habitat model, and at the pink points fewer animals are observed than predicted.

For grey seals, a significant correlation also exists between the predicted counts from the habitat model and the observed counts recorded during the aerial surveys. Haul-out sites predicted to have highest numbers of grey seal typically also host the largest groups of these animals. Compared to harbour seals, grey seals exhibit a higher degree of clustering at a limited number of haul-out sites, predominantly located in the Dutch Wadden Sea (Fig. 7).

Figure 7. The discrepancy between the observed counts of grey seals during aerial surveys and the predicted numbers derived from the habitat model. See Fig. 6 for more details.

When aggregating the numbers of harbour seals for each sub-area (the Dutch Delta in Zeeland (ZE), the Dutch Wadden Sea (NL), Lower Saxony (LS), Schleswig-Holstein (SH) and Denmark (DK)), the estimated carrying capacity derived from the habitat model aligns with the maximum counts recorded for each sub-area (Fig. 8). In Schleswig-Holstein, the number of animals observed during the moult markedly exceeds the estimates derived from the habitat model. Many pups are born in this region, and it is likely that both the immature and the reproductive individuals have not completely dispersed throughout the area by August. For the Dutch Delta area near Zeeland, the estimated carrying capacity significantly exceeds the August counts. This population is still growing, despite a limited number of young individuals being born in this region. Later in the year, during the more intensive foraging season, harbour seals from the Wadden Sea may use this area to feed. The population of grey seals is also comparatively high in the Dutch Delta region in Zeeland, which may lead to some level of competition. The Dutch Delta region is also adjacent to the international port of Rotterdam, one of the busiest shipping areas in the North Sea, which may negatively impact the quality of foraging habitats in the area. Future population monitoring data may indicate whether harbour seal numbers persist below the estimated carrying capacity.

Figure 8. Maximum moult counts (black line) of harbour seals in the different sub-areas (ZE = Dutch Delta near Zeeland, NL = Dutch Wadden Sea, LS = Lower Saxony, SH = Schleswig-Holstein, DK = Denmark) and the estimated carrying capacity derived from the habitat model.

A similar analysis has been performed for grey seals. While the habitat model predicts the highest grey seal numbers in the Dutch Wadden Sea, the actual number of seals observed far exceeds the predictions. This could be because the Netherlands is closest to the UK, the source population from which most grey seal immigrants originate. Furthermore, compared to harbour seals, grey seals appear to have a stronger tendency to form large groups at a limited number of haul-out sites.

In conclusion, the distribution of habitat types at sea significantly explains some of the observed variation in seal numbers at the haul-out sites, allowing for cautious statements regarding regional carrying capacity. The explanatory capability of the habitat model is heavily influenced by the granularity of the haul-out site clustering used. A finer clustering implies smaller travel distances between haul-out clusters. When seals choose to travel slightly further to rest at more suitable haul-out locations (e.g., due to lower exposure or conspecific attraction or intraspecific repulsion), a finer clustering will likely lead to a lower predictive performance. However, when seal numbers from haul-out clusters are combined to estimate regional carrying capacity, the influence of such finer scale processes diminishes, although the effects of larger-scale processes, like delays in population redistributions, may become more prevalent.

While a correlation exists between the predicted and observed seal numbers, considerable discrepancies remain. These deviations offer valuable opportunities for future research. For instance, when count data from the foraging periods, specifically the winter months for harbour seals, are collected, is there a more robust correlation between the numbers predicted by the habitat model and the aerial survey counts? Or can the observed differences be partially attributed to the presence of grey seals, suggesting competition for space or resources? Is there potential competition with harbour porpoises, currently the most abundant marine mammal species in the North Sea? Which research question to tackle and which improvements to make likely depends on the research objective. Two research lines can be proposed:

- 1) Inclusion of population dynamical processes, which includes both model improvement and additional survey data outside the moulting and pupping season.
- 2) Improving the habitat model by including other environmental variables, such as those related to human activities or the presence of natural competitors, like grey seals

One implicit assumption of the method used in this study is that each cluster of haul-out sites has reached its carrying capacity. This assumption may not be valid. The seal population in the Dutch Delta continues to grow and may continue to do so since in the coming years. Also, the Dutch part of the Wadden Sea may not yet be fully saturated with harbour seals, as suggested by figure 13, which shows negative residuals. The modelling of observed counts as a function of the habitat-based predicted counts fails to account for transients in population size and other population dynamic processes. Instead, one could model the regional population growth rate as a density dependent process, with the availability and quality of habitats explicitly included into the carrying capacity component of the model.

DATE
24 oktober 2024

OUR REFERENCE
2426147.SBr.mw

PAGE
11 of 14

Habitat model improvement

The proposed analysis can be extended to include the effects of human activities. When there is sufficient support in the seal tracking data to estimate the effect of human-related variables on seal density, it might be possible to estimate how this translates into population consequences. In some cases, the effect of human activities could be temporary, such as the avoidance during pile driving. For those activities, more complex individual-based models might be required to derive the population-level consequences. When the effects become more permanent, such as a permanent partial or complete exclusion of seals, the approach presented here may be used to determine how this translates into regional declines in carrying capacity, reflected in changes seal numbers. For example, the habitat model could be used to investigate whether the construction and operation of windfarms affects seal distribution at sea, for example by including the distance to an operational windfarm as a covariate. Shipping activity may also deter seals or their prey, and shipping density maps for different vessel types (including fishing vessels) derived from AIS data could be included as a covariate in the habitat model. Since the effect of shipping may propagate over larger distances, the shipping density is spatially smoothed (using variable band widths) to capture possible effects over larger distances. After estimating the influence of the various human-related variables on seal distribution, the methodology proposed in this study could be used to predict regional population sizes both with and without these anthropogenic covariates. The initial focus will be on examining variations in seal density related to human activities. Future considerations may encompass alterations in foraging efficiency, including changes in prey capture ability. Once changes in density and foraging efficiency are fully quantified, this could theoretically be used to predict population-level consequences of human activities and infrastructure. Similarly, also the potential influence of competition with natural predators, could be considered by including density of the other seal species as a model covariate.

The proposed model improvements could potentially enable the direct estimation of the impact of these activities on the quality of foraging habitats and how this may translate into changes in population size. Furthermore, scenarios can be simulated using the methodology proposed here, to determine where human activities have the greatest or least impact on the seal population. Finally, the method presented may also serve as a conservation tool by estimating the anticipated number of seals on current or newly established resting sites (e.g., beach closures).

Acknowledgement

We thank our national and international collaborators who kindly provided the aerial survey count data: Anders Galatius (DK), Armin Jeß (SH), Christian Abel (LS), Jens Brackmann (LS), Floor Arts (ZE) and Mark Hoekstein (ZE). The following crew assisted in seal tagging (alphabetic order): Bakker Arnold, Baptist Martin, Boersma Eelke, Booij Peggy, Bos Oscar, BravoRebolledo Elisa, Chris Veenstra, Cremer Jenny, Dankers, Norbert, de Jong Martin, de Vries Simon, de Wal Freek-Jan, Dijkstra Arjen, Dijkstra Eelke Seibren, Jol Johan, Kirkwood Roger, Klaas Kreijer, Koelemij Erica, Laros Nico, Leeuwen van Piet Wim, Meerstra Bert, Meesters Erik, Meijboom Andre, Perdon Jack, Pool Chris, van der Wal Nanneke, Reijnders Peter, Sonneveld Cor, Tamara van Polanen Petel, van Dijk Jan, van Gool Ad, van Hoppe Maarten, van Leeuwen Piet-Wim, van Zweeden Carola, Verdaat Hans. The Dutch Ministry of Agriculture, Fisheries, Food Security and Nature (LVVN), Groningen Sea Port, Eneco, and Gemini windpark funded the seal GPS transmitters. LVVN funded the aerial surveys in the Wadden Sea and we

DATE
2 December 2024

OUR REFERENCE
XXXX

PAGE
12 of 14

thank the pilots, in particular Aad Droke. We thank Rens Cronau and Tim Schellekens for their constructive comments. Finally, we would like to thank RWS (MONS program, lead by Jakob Asjes and Rens Cronau) and the European Union for funding this research.

Quality Assurance

Wageningen Marine Research utilises an ISO 9001:2015 certified quality management system. The organisation has been certified since 27 February 2001. The certification was issued by DNV.

DATE
24 oktober 2024

OUR REFERENCE
2426147.SBr.mw

PAGE
13 of 14

DATE
2 December 2024

OUR REFERENCE
xxxx

PAGE
14 of 14

Justification

Project Number: 4315100228

The scientific quality of this report has been peer reviewed by a colleague scientist and a member of the Management Team of Wageningen Marine Research

Approved: Dr J.M. Ransijn
Researcher

Signature:

Date: 15 May 2025

Approved: Maarten Mouissie
Business Manager

Signature:

Date: 15 May 2025

1 **The regulation of colony size by**
2 **offshore habitat quality: Extending the**
3 **hinterland model**

4
5 Aarts, Geert^{1,2,*}, Brasseur, Sophie¹, Schop, Jessica¹,
6 Ransijn, Janneke¹

7
8 ¹ Wageningen Marine Research, Wageningen University & Research – Den Helder, The
9 Netherlands
10 ² Wildlife Ecology and Conservation, Wageningen University & Research – Wageningen, The
11 Netherlands

12
13 *Corresponding author
14 Correspondence: geert.aarts@wur.nl

15
16 **ABSTRACT**

17 The regulation of colony sizes in central-place foragers, such as seabirds and pinnipeds, is
18 intricately linked to the surrounding seascape. In a rapidly changing world, understanding this link
19 is vital to predict how environmental changes at sea will impact the population dynamics of these
20 predators. Typically, those colonies with a large hinterland (defined as the total region of space
21 that is closest to a specific colony) tend to have more individuals. Currently, this approach often
22 ignores variation in habitat suitability within the hinterland. Here we extend the hinterland model
23 by incorporating spatial heterogeneity to predict harbour seal (*Phoca vitulina*) and grey seal
24 (*Halichoerus grypus*) group sizes and distributions along the coast of the southern North Sea.
25 Using GPS tracking data from more than 300 harbour and grey seals, tagged between 2007 and
26 2023, we developed a species-habitat-association model to quantify seal density as a function of
27 environmental variables, including depth, sediment type, and topographic position index.
28 Subsequently, model-based predictions of their at-sea distribution were allocated to the
29 surrounding haul-out sites based on distance, and the estimated regional population sizes were
30 compared to numbers observed during aerial surveys. The habitat model revealed a strong
31 correlation between habitat features and seal density, with seals favouring relative shallow waters
32 of around ~20m depth with low mud content and presence of gullies. However, the distance
33 between the haul-out site and these habitat types was by far the most important environmental
34 variable explaining seal distribution, indicating seals density is on average higher in areas closer
35 to their haul-out site. Predictions of the number of individuals on the haul-out site based on the
36 habitat model were significantly correlated with the numbers observed during the aerial surveys.
37 However, large discrepancies between observed and predicted haul-out numbers often existed,
38 most likely caused by both small- and large-scale processes. Small scale processes include
39 differences in preference for specific haul-outs sites, for example their exposure to waves or
40 anthropogenic disturbances, which were not included in the model. Large scale processes may
41 include delays in redistribution following breeding and moulting, potential interspecific competition
42 with other predators, including interactions between seal species, and influences from human
43 activities. Nevertheless, these findings suggest that on average the availability and quality of
44 foraging habitats at sea can explain where seals can be found on land and in what numbers. These
45 findings also suggest that aerial survey counts of seals on haul-out sites, particularly outside the
46

47 pupping and moulting seasons, could serve as indicators of regional marine habitat quality for
48 seals and changes therein. The approach has implications for marine spatial planning, including
49 the mitigation of human impacts such as the construction offshore wind farms. This methodology
50 also offers a framework for assessing habitat suitability and carrying capacities for other central-
51 place foraging species. Future research should include inter- and intraspecific competition and
52 facilitation, variations in prey abundance and anthropogenic factors to improve predictive
53 performance and support conservation applications.

54
55 **Keywords:** *Species distribution model, habitat selection, optimal foraging, ideal-free distribution,*
56 *animal aggregations, marine predators, central-place foragers, environmental impact*
57 *assessments.*

58

59 Introduction

60 Many central-place foraging species across the globe aggregate in groups to form colonies.
61 These animal aggregations can vary greatly in size, and some may contain millions of individuals
62 (Brown, 2016). This variation in group size has intrigued ecologists for decades, and has instigated
63 investigations into the underlying mechanisms (Cairns, 1989, p. 19; Gaston et al., 2007; Jovani et
64 al., 2016; Santora et al., 2020). Several studies have shown that (maximum) group size is often
65 regulated by the size of the foraging area in the surrounding landscape. For example, those
66 species with larger maximum foraging ranges tend to aggregate into larger groups (Patterson et
67 al., 2022). More specifically, (Jovani et al., 2016) found that the square of the maximum foraging
68 range is linearly correlated with colony size. While this linear relationship may hold when central-
69 place foragers can freely radiate out away from the colony, density-dependent competition may
70 cause spatial segregation between the foraging distribution when individuals from neighbouring
71 colonies compete for the same resources, (Aarts et al., 2021; Bolton et al., 2018; Grémillet et al.,
72 2004; Wakefield et al., 2013). Such spatial segregation may severely reduce the foraging area
73 available to individual members of a specific aggregation.

74 The most simplistic model that accounts for the effect of spatial segregation on the distribution
75 and size of colonial animal aggregations is the Hinterland model (Cairns, 1989), where the
76 Hinterland is the region of space that is in closer proximity to a particular colony than any other
77 colony. Under this model, foraging animals are assumed to always return to the nearest colony,
78 which leads to equidistant boundaries between neighbouring colonies (i.e., a Voronoi tessellation
79 of space). The size of these colony-specific Hinterlands will dictate colony size (Cairns, 1989;
80 Wakefield et al., 2014). For example, colonies that are surrounded by other colonies will have
81 smaller Hinterlands and are expected to contain fewer individuals than colonies located in isolation.
82 There are, however, two main shortcomings to the use of Hinterland areas to explain colony size.
83 First, in nature the boundaries between hinterlands are not absolute and impermeable, and the
84 foraging distribution of animals from neighbouring colonies may be mixed across these
85 boundaries. Second, habitat quality will vary across the landscape; as a result, certain Hinterlands
86 may contain more profitable foraging habitats than others. For example, a particular Hinterland
87 may have large foraging areas of high quality that are in close proximity to the colony. The latter
88 aspect, the importance of habitat in shaping colony size, has been studied by Wakefield et al.
89 (2014). They used prior information on habitats suitability for black-browed albatross and used this
90 to remove unsuitable habitat from each Hinterland. This led to a strong and significant correlation
91 between the observed colony size and the size of this habitat-filtered Hinterland. While this
92 approach may work well for species with clear discrete partitioning between suitable and
93 unsuitable habitat, several species may perceive habitat suitability on a more continuous scale,
94 with some areas more suitable compared to others. This is especially true for marine top predators
95 that rely on mobile and variable prey.

Species-habitat association models can be used to determine this gradient in habitat suitability and assess the degree to which habitats within the foraging range are preferentially selected. When the individuals are aware of the quality of each patch and free to enter any patch (known as the ideal-free distribution - (Fretwell & Lucas, 1969)), they are expected to feed in the most profitable patch. When a species population is at carrying capacity and all available habitats are saturated, species density will be proportional to habitat quality (Matthiopoulos et al., 2020). Therefore, by linking variation in species densities to environmental variables, habitat selection and thus habitat quality can be derived. This idea has led to the development of a large variety of habitat selection models, many of which have been fitted to either line- or point-transect survey (Buckland et al., 2001; Gilles et al., 2016) or tracking data (Aarts et al., 2008).

The objective of this study is to predict the distribution and size of colonies based on the quality and availability of foraging habitat types in the surrounding landscape based on an improved version of the Hinterland model which also incorporates the influence of spatial habitat heterogeneity. This approach will be explored for both harbour seals (*Phoca vitulina*) and grey seals (*Halichoerus grypus*), the only two resident seal species of the North Sea. The harbour seal is the most prevalent seal species in the coastal waters of continental Europe. For example, following a rapid recovery, an estimated 35,000 individual harbour seals are currently present in the Wadden Sea (Galatius et al., 2024). However, population size has remained stable since approximately 2011 (Brasseur et al., 2018), and in recent years, it has decreased (Galatius et al 2024). One possible hypothesis is that the population has reached carrying capacity, which may have been reduced in recent years as a result of natural or human-related processes within their foraging range. When they are not at-sea, harbour seals haul-out on sandbanks or edges of intertidal flats. During the pupping (June-July) and moulting (July-September) seasons in the Wadden Sea, a substantial portion of the population is found on land. Hence most surveys assessing population size and pup production are carried out during these periods (Cowles et al., 2013; Meesters et al., 2007; Teilmann et al., 2010; Thompson et al., 1997). However, harbour seals also utilize haul-out sites throughout the rest of the year, and during those periods, their haul-out is likely more closely linked to the distribution of high-quality foraging habitats at sea. From the haul-out sites, harbour seals undertake regular foraging trips to sea. Harbour seals mostly feed near the bottom on a variety of relatively small prey species (i.e. 10-30cm (Tollit et al., 1997; Wilson & Hammond, 2016), e.g. flounder, plaice, sole, sandeel, dragonet (unpublished data from Dutch diet studies, Aarts et al. 2019). Although harbour seals can make trips of tens to hundreds of kilometres, in the southern North Sea they mostly forage within 50km from their haul-out site, in relatively shallow waters (10-50m) characterized by sandy substrates (Bailey et al., 2014; Jones et al., 2015; Sharples et al., 2012; Tollit et al., 1998).

Grey seals were virtually absent in the southern North Sea, near the coast of continental Europe (Reijnders et al., 1995). However, following a few incidental sightings in the early 1980s, the number of grey seals has increased exponentially at a rate of approximately 15% per year (Brasseur et al., 2015). Immigration, particularly of juveniles from UK waters, is likely responsible for the initial growth. In addition, it assumed that a significant number of grey seals that breed in the UK continue to migrate to the southern North Sea to forage and potentially moult, particularly during the early spring and summer (Brasseur et al., 2015). As a result, during the moult surveys conducted in March and April in recent years, a total of 3,437 (2023) grey seals were counted in the Dutch Delta region and 11,515 (2024) grey seals were counted in the Wadden Sea and Helgoland (Hoekstein et al., 2024; Schop et al., 2024). The vast majority of these seals reside in Dutch waters. In contrast to harbour seals, grey seals are more frequently found in large and dense groups (Hoekendijk et al., 2023) on sand banks that remain dry during high tide, from which they make trips to sea. Although grey seals also feed in close proximity to their haul-out sites and near the shore, they typically embark on foraging trips that are longer and more distant, occasionally travelling as far as the Dogger Bank, which is approximately 300km away. Grey seals, like harbour seals, are primarily benthic foragers, feeding a diverse array of prey species, with different flatfish species and sandeel being the important prey species in the North Sea (Damseaux et al., 2021).

148 Grey seals are known to favour regions with coarse substrate (Aarts et al., 2008; McConnell et al.,
149 1999).

150 In this study, we will utilize an extensive data set of 257 tracked harbour seals (2007-2023) and
151 94 tracked grey seals (2005-2019) and fit a species-habitat association (SHA) model to study their
152 distribution at sea and its relationship with environmental variables (e.g., depth-related variables,
153 seafloor sediment type and accessibility). This SHA model is then used to predict the at-sea
154 distribution for all harbour and grey seals in the North Sea hauling-out in the Netherlands,
155 Germany, and Denmark. The predicted at-sea distribution is subsequently allocated to the nearest
156 cluster of haul-out sites to estimate the expected number of seals found on those haul-out sites.

157

158 Methods

159 Seal GPS tracking.

160 This study was based on previously collected data from animal-borne GPS data loggers
161 (Brasseur et al., 2009a, 2009b, 2010, 2011; Brasseur & Kirkwood, 2015; R. Kirkwood et al., 2014;
162 R. L. Kirkwood et al., 2015). Between 2006 and 2023 a total of 257 harbour seals and 94 grey
163 seals were fitted with tracking devices. Most individuals (i.e., 142) were tagged in the Ems estuary,
164 between 2009 and 2011. GPS tagging mostly took place in March (N=123) and September
165 (N=104), and most GPS location data were collected during the first months following tagging. The
166 seals were caught on the haul-out site with a large seine net, and tagging details can be found in
167 (Aarts et al., 2019; Brasseur, 2017). Because the data loggers were glued to the seals' fur, most
168 would become dislodge after several months, but certainly before August for harbour seals and
169 March/April for grey seals, when they moult, and their fur is shed.

170 The Fastloc GPS data loggers (Sea Mammal Research Unit, UK) were set to collect and store
171 GPS locations every 10-20 min (depending on the research project). Data from a depth sensor
172 (precision of 0.5 m) and a submergence sensor were used to determine the activity of the seal:
173 "diving" (defined as deeper than 1 m for at least 4 s), "at surface" (no dives for 180 s) or "hauled
174 out" (continuously dry for at least 600 s until wet for 40 s) (Vincent et al., 2010). Locations, dive,
175 haul-out, and summary records were stored, and the Fastloc GPS data loggers transmitted the
176 data via the Global System for Mobile Communications (GSM) phone network, when in contact
177 with a GSM base.

178

179 Aerial survey haul-out counts.

180 In the international Wadden Sea bordering the Netherlands, Germany (Lower Saxony and
181 Schleswig-Holstein) and Denmark aerial surveys were conducted to count harbour and grey seals,
182 (Brasseur et al., 2015, 2018; Reijnders et al., 1997). For both species, 5 aerial surveys were carried
183 out each year, 3 during pupping periods (Jun. – Jul. for harbour seals; Nov. – Jan. for grey seals)
184 and 2 during moulting period (Aug. for harbour seals; Mar. – Apr. for grey seals). In the Dutch Delta
185 area aerial surveys were conducted on a monthly basis (Hoekstein et al., 2024).

186 Harbour seals are typically more widespread over numerous haul out sites, while grey seals
187 tend to concentrate on fewer higher grounds mostly in the western part of the Wadden Sea.
188 Therefore, the focal harbour seal pup and moult surveys cover all seal haul-out sites, while grey
189 seal pup and moult surveys might not cover all harbour seal haul outs. Only the survey dates that
190 covered at least 90% of the haul outs were selected.

191 Aerial surveys were carried out from a fixed-wing, single engine aircraft. Surveys were
192 conducted around low-tide and only in optimal weather conditions (Brasseur et al., 2018; Reijnders
193 et al., 2003). The flight route was recorded using GPS. In all regions, except Lower Saxony, all
194 seals observed were photographed, from which animals were counted, separating species and,
195 when applicable, pups from adults. In Lower Saxony seals were counted directly during the flight.

196 For the Delta region and the Wadden Sea areas of the Netherlands and Lower Saxony, we
197 used the average counts from a 10-year period (2014-2023) of aerial survey data collected during
198 the moult season. For the Wadden Sea areas in Denmark, we only used data from 2017 as multi-
199 year or more recent data are currently not available.

200

201 **Telemetry data pre-processing and trip definition**

202 First, we removed records of haul-out periods that did not result in a subsequent trip to sea.
203 These occurrences were presumed to be the result of tags falling off on land, primarily during the
204 moult. Also, data during the first 10 days of tracking data were removed due to the possibility that
205 seals may exhibit aberrant behaviour immediately following the tagging event. To predict absolute
206 densities at sea for the entire population using aerial survey haul-out counts, it was necessary to
207 model the spatial distribution of tracked seals in relation to the haul-out sites from which they
208 performed trips. To achieve this, each trip to sea was linked to the corresponding start and end
209 haul-out in the following manner. A GPS wet-dry sensor on the tag record the start and end of
210 each haul-out event and all GPS locations outside these haul-out events were considered at-sea
211 locations, and within these haul-out events the seal was assumed to be resting on land. The
212 location of a haul-out event was estimated as the average location of all GPS-fixes during that
213 haul-out event. In some cases, no GPS location fix was obtained during a haul-out event. In that
214 case, we first estimated all true haul-out locations, which were defined as any GPS location during
215 any haul-out event which lasted at least 3 hours. Next, the GPS location fix closest in time before
216 or after the haul-out event with missing GPS fixes was linked to the nearest true haul-out locations.
217 The coordinate of that true location was used as the coordinate of that haul-out event. For all GPS
218 locations it was then possible to estimate the start and end time and location of a trip. In theory, if
219 the start and end location of a trip was exactly the same (return trip), that haul-out location was
220 defined as the “trip haul-out”. However, in practice, the start and end haul-out location were almost
221 always different (transitory trips), and all locations prior to the midpoint (in time) of the trip were
222 allocated to the start haul-out, and those after the midpoint to the end haul-out. Locations with no
223 “trip haul-out”, e.g. those at the beginning or end of the deployment period, were removed from the
224 analysis.

225 Location fixes could be obtained every 10-20 minutes, but the time window between fixes could
226 also be several hours if a seal stayed at the surface only briefly. To reduce the number of data
227 points and achieve some regularity in the tracking locations, a regular sequence of two-hour time
228 points was generated within the deployment period for each individual and only those GPS
229 locations were retained which were closest to one of those two-hour time point. This way we
230 reduced the number of data points, without losing too much information: several of the points close
231 in time will be removed, while the less frequent GPS location fixes were retained.

232

233 **Explanatory environmental variables used for habitat modelling.**

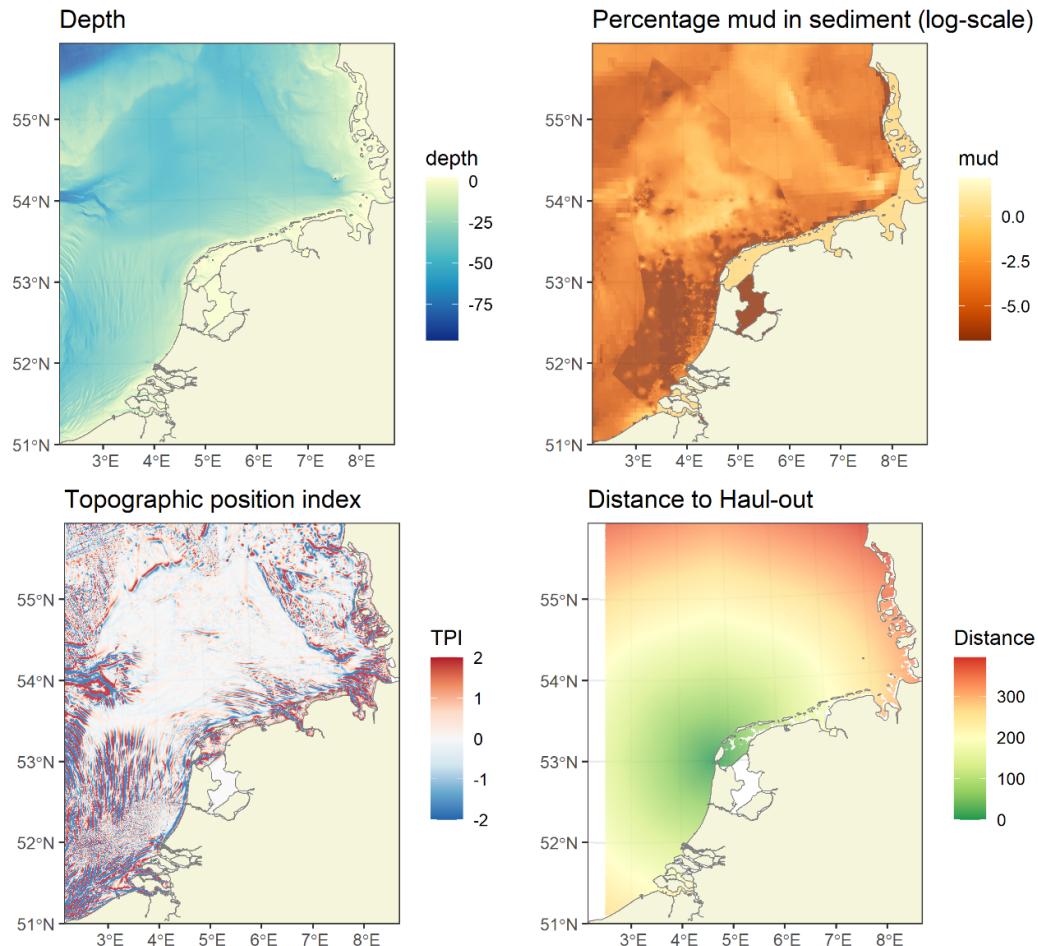
234 Seals are central-place foragers, feeding predominantly near the bottom on benthic prey
235 species. Studies have shown that harbour and grey seals use areas that are relatively shallow and
236 characterized by sandy substrate (Bailey et al., 2014; Jones et al., 2015; Sharples et al., 2012;
237 Tollit et al., 1998). Therefore, the covariates, distance to haul-out, depth, topographic position
238 index (TPI) and sediment type (%mud) were used (see sections below for more details). The study
239 did not use fish surveys to estimate environmental variables describing the distribution of prey
240 because of the very low sampling effort within the foraging range (Aarts et al., 2019) and the lack
241 of resolution required to capture the fine scale variations in seal distribution..

242

243 *Distance to haul-out*
244 Foraging sites closer to haul-out sites are more easily accessible. Even if they select areas
245 further offshore to forage, they always must cross the intermediate areas. Consequently, habitat
246 use is expected to be negatively correlated with distance to the haul-out site. Because seals
247 circumvent all land or shallow areas, the shortest at-sea path between each haul-out site and point
248 at-sea was derived. Shortest path calculation was based on a regular grid with varying spatial
249 resolution; a higher resolution (i.e., a point every 200m) in coastal waters (<10km from land), and
250 a coarser resolution (i.e., a point every 1 km) offshore in the North Sea, which would reduce the
251 computational cost, but maintain the level of detail where needed. For each grid point, links were
252 created with the 16 nearest neighbours (function nn2, R package RANN (Arya et al., 2019)). Any
253 link with a land-based point was removed. Based on this, a graph object was created (function
254 graph.data.frame, R package igraph (Csardi & Nepusz, 2006)). The graph object can subsequently
255 be used to calculate the path (and distance) of any grid point within the landscape to a haul-out
256 site. Each trip's haul-out event location may be regarded as a distinct haul-out site. To minimise
257 the computation time required for calculating the at-sea distance, the locations of the haul-out
258 events were grouped into a limited number of haul-out clusters. This was achieved by applying
259 hierarchical clustering to the distances between all pairs of haul-out locations using the function
260 hclust (R package = stats, method ="average") and cutree, with cut-off distance of d=2.5km.
261 Next, for each cluster, the distance between the haul-out cluster c and each point at sea (taking
262 land obstacles into account) was calculated.
263

264 *Nearest distance ratio*
265 Previous studies have revealed that the at-sea distributions of seals making foraging trips from
266 neighbouring haul-out sites tends to be spatially segregated, which leads to a more channelled
267 and outward distribution, rather than seals radiating out equally in all directions (Aarts et al 2019).
268 This spatial segregation is most likely caused by a combination of foraging efficiency (i.e. choosing
269 a haul-out site which is closest to the foraging site) and density dependent competition. As a result,
270 it is less likely for seals to forage in the direct vicinity of a neighbouring colony. To capture this
271 aspect, we calculated for each cell in space the distance to the seal's trip haul-out and divided this
272 by the distance to the nearest haul-out site. This ratio is equal to 1 when the cell is (just) closest to
273 the seals' trip haul-out cluster, and almost zero when the seal is foraging near another
274 neighbouring haul-cluster, far from its original trip haul-out cluster.
275

276 *Sediment*
277 To describe sediment type in this study, we used the relative proportion of the grain size fraction
278 < 63 µm (% mud - Fig. 1a, b). Sediment data was obtained from a combination of two data sources.
279 For the Dutch EEZ data, details can be found at http://www.emodnet-seabedhabitats.eu/pdf/Ilmares_Dutch_Marine_landscape_Map.pdf. For other areas in the North
280 Sea, we used maps created by Helmholtz-Zentrum Geesthacht (HZG) as part of the NOAH project
281 (<https://www.noah-project.de/habitatatlas/substrate/index.php.de>).
282


283
284 *Depth*
285 Bathymetry data were extracted from the harmonized EMODnet Digital Terrain Model (DTM,
286 see <http://www.emodnet-hydrography.eu/>), which is based on regional DTMs, and gaps with
287 no data coverage were completed by integrating the GEBCO Digital Bathymetry (Fig. 1). The
288 measurements were continuous, and the spatial resolution was approximately 100m x 100m
289 in a WGS84 geographical projection but converted to a regular 200m x 200m grid in UTM 31N
290 projection.
291

292 *Topographic position index*

293 The topographic position index (TPI, function tpi, package spatialEco (Evans, 2020)) is defined
294 as the height of each pixel relative to the average height of pixels within a prespecified radius. TPI
295 values >0 characterize peaks and ridges, while low TPI values <0 characterize gullies or troughs.
296 Here TPI was calculated for a radius of 5km, describing intermediate-scale topographic features,
297 respectively.

298

299

300

301

302
303
304

Figure 1 Maps of the explanatory variable Depth (m), %mud in the sediment, topographic position index (5km circle), and distance to one haul-out (km) (here Razende bol as an example).

305

306 **Use availability design and Poisson point process likelihood.**

We aim to estimate a Species-Habitat Association (SHA) model $w(X)$ that quantifies seal density as a function of environmental variables X . To achieve this, one could discretize space into grid cells, calculate the number of seal GPS locations within each cell and model the corresponding counts using a Generalized Linear Model (GLM) with a Poisson likelihood. Alternatively, the SHA model can be fitted using a use-availability design, in which the GPS locations ('used' points) are contrasted with a set of random points in space ('availability' points) and fitting the model using an Inhomogeneous Poisson point process (IPP) likelihood function. As the IPP likelihood is generally not available in most GLM-fitting software, infinitely weighted logistic regression (IWLR) can be used instead. In this case a binomial model is fitted to the data, where the GPS locations have a response value of 1 and the availability points a response value of 0. These availability points receive a large likelihood weight (1000 in our case), which can be specified by the 'weight' argument. Under such a IWLR framework, the exponential of the linear predictor will be proportional to the Species-Habitat Association (SHA) model $w(X)$.

320 To approximate the integral of the IPP likelihood, for each GPS location, more availability points
321 lead to more precise estimates. Due to computational limits, we generated 2 availability points for
322 each used point, with sampling weights of $1/\text{distance}^2$. Since the vast majority of the tracking data
323 was within 150km from the haul-out for harbour seals and 200km for grey seals, and to reduce the
324 computation time, we constrained the used and availability points to this range. For each sampled
325 point, the total area represented by all nearest points (sampled and unsampled) was calculated
326 and used as quadrature weights q_n . This will lead to an unbiased sampling design, but higher
327 resolution near those places heavily used by seals. Another factor to take into consideration is that
328 the GPS locations are serially correlated, with locations close in time being also more likely to be
329 close in space. Since most environmental variables are also spatially correlated, successive GPS
330 locations will also tend to have similar values for the environmental variables. This would lead to
331 an artificial inflation of the degrees of freedom. Instead of resampling and removing GPS
332 observations, we downweigh (r) the observation in the likelihood function based on the time
333 between successive observations expressed as fraction of two hour, a time window commonly
334 used in other seal habitat studies (Carter et al. in prep). Finally, although 2 random locations were
335 generated for each GPS locations, some of those might be removed when they did not contain the
336 necessary environmental data. Since this might lead to fewer availability points, each availability
337 point received a weight which was the inverse of the number of availability points (a) per GPS
338 observation. The product of all three observation specific weight factors (i.e. quadrature weights
339 q , time-interval weights r and removal-correction weights a) was included as model weights for the
340 availability points and the time-interval weights were included as model weights for the
341 used/telemetry points.
342

343 Species habitat-association model structure and fitting

344 The spatial distribution of the observed animal locations in geographical space can be treated
345 as realization of an IPP with a rate $w(X)$. This rate $w(X)$ describes the animals' preference for
346 being at a point in space with environmental conditions X . In accordance with count models, we
347 assume that w is the exponent of the linear predictor η .

348 (1) $w(X) = e^\eta$

349 The simplest form of the linear predictor is to assume that it is a linear function of the
350 environmental variables $x_1 - x_J$. However, animals often respond non-linearly to environmental
351 variables, e.g., they might have a peak preference for a particular explanatory variable. This non-
352 linearity was included in the model by including smooth functions of x

353 (2) $\eta = \beta_0 + s(x_1) \dots + s(x_j) \dots + s(x_J)$

354 Since individual animals may differ in how they respond to different environmental variables,
355 these smooth functions were allowed to differ by individual, which was enabled by including a
356 factor level smoother:

357 (3) $s(x_j, m = 2) + s(x_j, ID, m = 2, bs = "fs")$,

358 where $m=2$ implies the model penalizes the second derivative of the smooth function and ID
359 refers to each unique individual. This is an additional penalty that helps to avoid overfitting by
360 allowing the parameters estimates to 'shrink' towards zero. The above formulation essentially
361 corresponds to a Generalized Additive Mixed Model, consisting of a global smoother (first term)
362 plus group-level smoothers with a shared penalty (second term) (Pedersen et al., 2019).

363 Additionally, a spatially autocorrelated error structure was included. For this, a spatial mesh
364 was created based on all the model data (use and availability points) with a maximum edge length
365 of 50km in the core area and 100km in the boundary area and a cut off of 5km (function

366 inla.mesh.2d). Based on the mesh, a Matern SPDE model, with spatial scale parameter $\kappa(u)$ and
367 variance rescaling parameter $\tau(u)$ is estimated (function inla.spde2.matern). In addition to this
368 'global' spatial latent field, individual-specific spatial latent fields were also estimated, which
369 captures individual-specific selection of spatial regions that cannot be explained by the
370 environmental variables included. Furthermore, since temporal correlation between successive
371 telemetry locations will also manifest itself as more clustered locations in space, this individual-
372 specific latent field should not only absorb spatial correlation, but also (part) of the temporal
373 correlation.

374 Model fitting was done in sdmTMB. Individual was included as factor level, to absorb any
375 difference in the relative ratio between used and availability points. The environmental variables
376 distance to haul-out, distance ratio, depth and TPI were included as model-covariate. Both
377 distance to coast and %mud was excluded due to model convergence problems. For each
378 covariate, global and individual-level smoothers (see eq. 3) were included. A global spatial latent
379 field was included (spatial = on), and individual-level latent field were included by including 'time'-
380 varying spatial latent field, where 'time' is redefined as to represent an individual animal in this
381 case (time=ID) and an IDD error structure (spatiotemporal = "IDD").

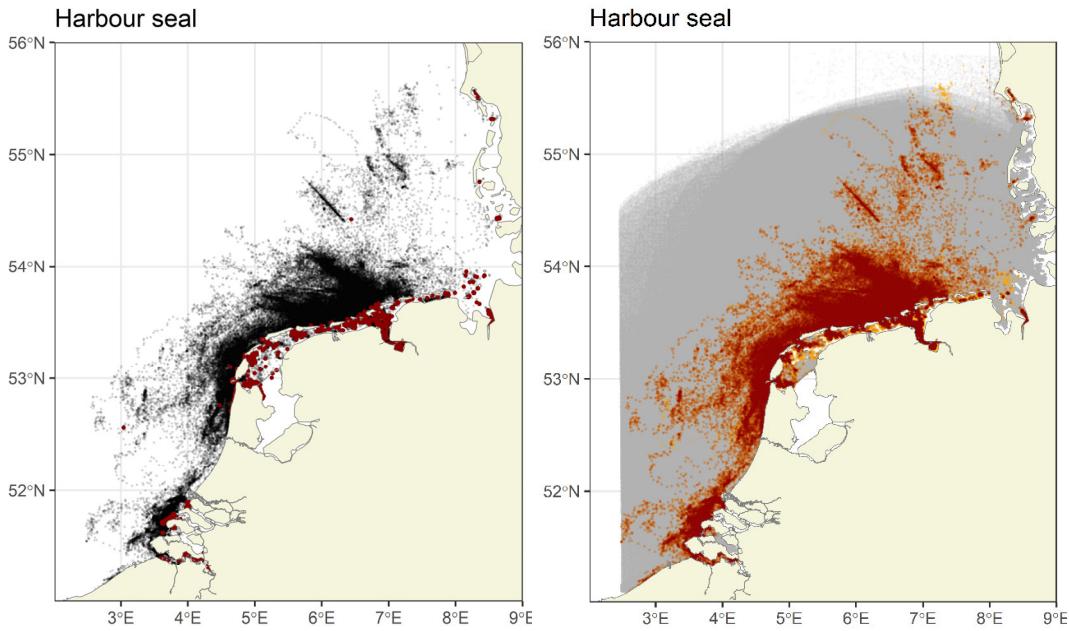
382

383 **Habitat-based prediction of numbers at the haul-out sites**

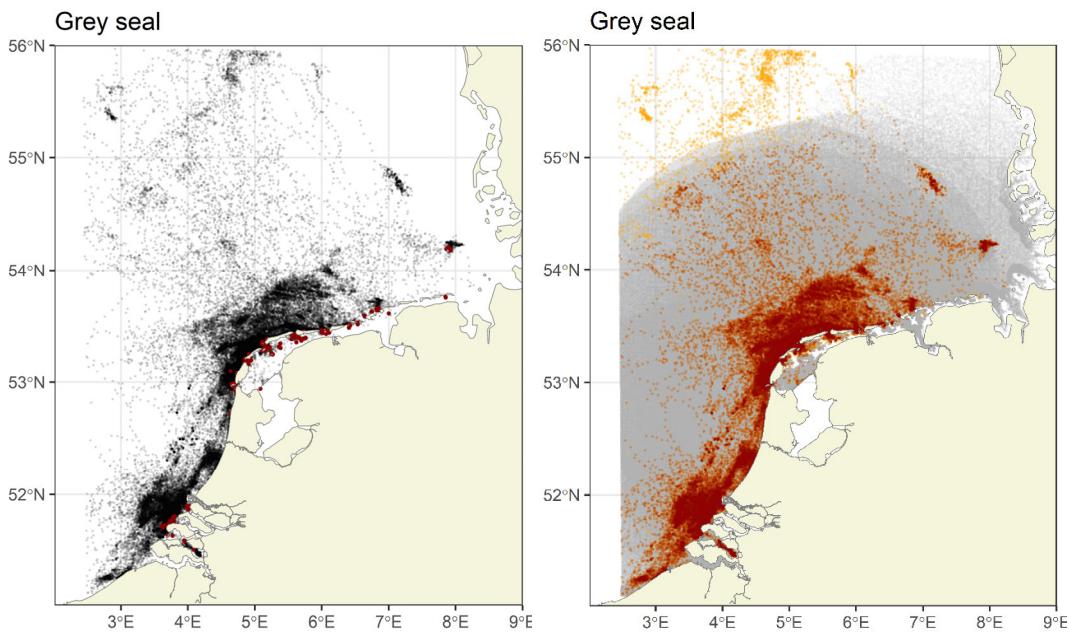
384 To establish a connection between the at-sea distribution of seals to a particular haul-out site
385 on land, the individual seals counted during the survey needed to be clustered. Similar to the
386 clustering of haul-out locations from tracking data, hierarchical clustering was applied to the
387 distances between all pairs of counts (photographs for the Dutch Wadden Sea data and grouped
388 counts for the other regions) using the function `hclust` (method = "average") and `cutree`,
389 applying a cut-off distance of $d=10\text{km}$. Next, the SHA (with distance to the haul-out cluster) was
390 used to predict for each haul-out cluster the usage for each cell in space. Here, we first assumed
391 seals behave as ideal-free foragers: they select habitats in accordance with habitat quality (as
392 defined by the SHA model) and only return to the haul-out site nearest to its foraging location (in
393 accordance with the Hinterland-model). While the SHA model was fitted using the covariate
394 'distance to the trip haul-out site', under the ideal-free null-model, this covariate can be replaced
395 by a single covariate 'distance to the nearest haul-out site'. This results in a single usage map for
396 the entire study area. Next, the usage within each cell needs to be distributed over all the different
397 haul-outs clusters. One approach is to use the Hinterland-model, which would allocate the usage
398 within each cell to the nearest haul-out site only. However, one the shortcomings of this Hinterland-
399 model and assumed ideal-free distribution is that if a cell is almost equally close to two haul-out
400 sites, all of its usage is allocated to only the nearest haul-out site. To allow mixing across and thus
401 making the Hinterland boundaries more diffuse, we use the estimated effect of the ratio between
402 the distance to the nearest haul-out and distance to the trip haul-out to divide the usage of each
403 cell among the surrounding haul-out sites. For each cell in space, this results in a cluster-specific
404 usage estimate, which was used to estimate the relative contribution of usage from each cluster.

405

406 **Results**


407 **Seal tracking**

408 Out of 259 harbour seals tagged, 202 individuals contained sufficient data (>10 days) within
409 the study region (Fig. 2) for the analysis. To reduce computational time, we only selected those
410 individuals with at least 200 GPS observations in the prepared data frame used for model fitting,
411 resulting in a total of 164 harbour seals. Among the 94 grey seals tagged, 69 individuals provided
412 a minimum of 200 GPS locations for the final model. The distribution of these GPS locations is
413 heavily influenced by where seals were tagged. For example, the high number of GPS locations
414 offshore along the Dutch and German border, North of the Ems Estuary is heavily influenced high


415 tracking effort (i.e. 148 tagged harbour seals) in that region. The tracking data also occasionally
416 reveals systematic clustering, e.g. in lines or clusters, which are often due to the presence of hard
417 substructures like pipelines, windmills or oil and gas platforms (Russell et al., 2014).

418 In total the data comprised of ~ 909 thousand GPS locations. Approximately 87 thousand
419 locations remained after subsampling at 2-hour intervals, and after data were selected to
420 correspond with the available environmental data (see Fig. 1), excluding the Wadden Sea and
421 inner-Delta region, and excluding locations less than 3km of any haul-out cluster or during haul-
422 out. The majority of these haul-outs (shown by red dots in Fig. 2a) were located near known haul-
423 out sites, which are typically sandbanks that become exposed during low-tide and are easily
424 accessible from the sea. None of the tracked seals hauled-out along the west coast of the Dutch
425 mainland, but one individual hauled-out on the coast of the island of Texel. Some apparent haul-
426 out events are located far into land or out at-sea, either due to erroneous location estimates or
427 because seals may occasionally spend long times at the water surface which can be perceived as
428 haul-out events. For each individual foraging trip, a set of availability locations were generated
429 (shown in Fig. 2b).

430

431

432

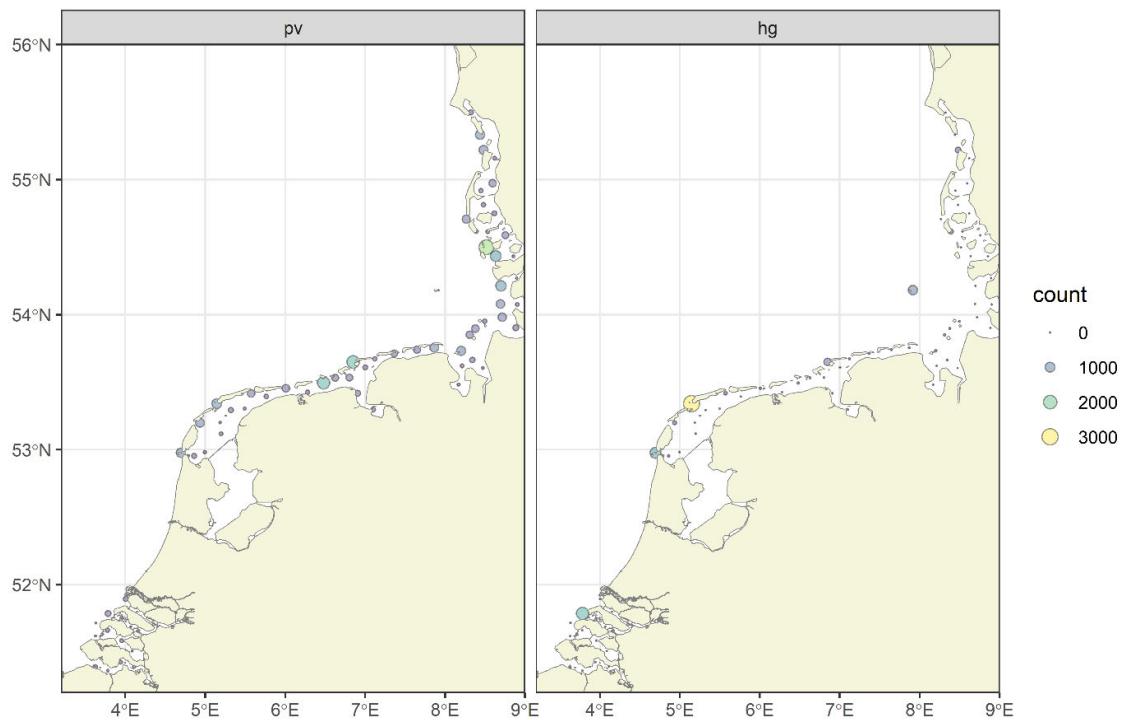

433
434
435
436
437
438
439
440

Figure 2. Left figure: The distribution of seal GPS (black dots) and estimated locations of the haul-out events (red dots). Note that during some haul-out events no GPS locations were obtained, and instead the nearest GPS location was used, leading to erroneous locations. Right figure: The distribution of all 'used' locations (i.e. GPS locations) and 'availability' locations. The orange points represent all GPS locations, and the red points those used in the analysis (sub-sampled at 2hr interval and within 150km (harbour seals) and 200km (grey seals) from the trip haul-out site). The grey points represent the availability points.

441

442 **Distribution and abundance of harbour and grey seals on the haul-out sites**

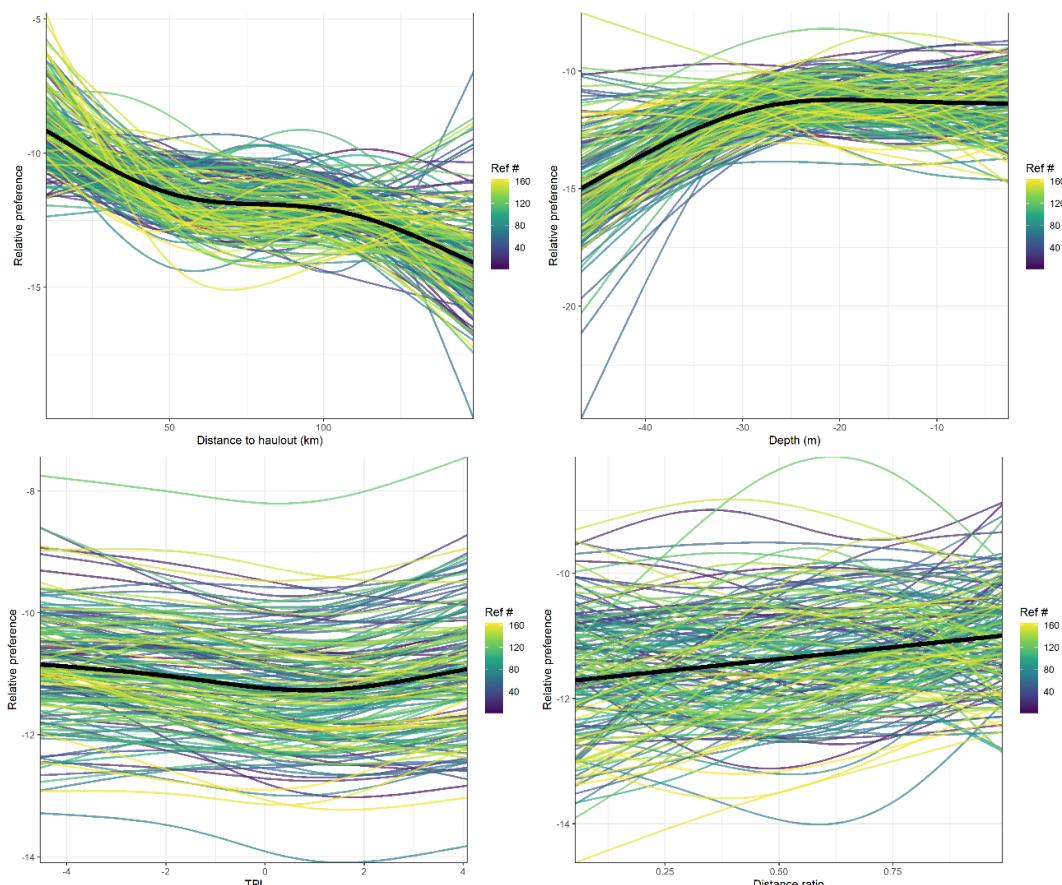
443 The distribution of sampling effort in time is shown in Appendix A, Fig. A2. All counts were
444 grouped into clusters representing haul-out areas as shown in Fig. 3. Although harbour seals are
445 found to haul-out throughout the international Wadden Sea, there are a few haul-out clusters that
446 contain substantially more individuals. These includes the Japsand, Norderoogsand and
447 Süderoogsand region in Schleswig-Holstein, the Kachelotplate in Lower Saxony and the
448 Rottumerplaat and Rottumeroog region in the Netherlands. In contrast to harbour seals, grey seals
449 are much more clustered into fewer colonies. During the grey seal moult season, aggregations are
450 found on Engelschhoek and the Razende Bol in the Dutch Wadden Sea, the Aardappelbult in
451 Zeeland and on the island of Helgoland.

452

Figure 3. Land-based distribution of harbour seals (left) and grey seals (right) counted during aerial surveys of the haul-out sites located in Dutch Delta region in the south (Netherlands) and the international Wadden Sea (Netherlands, Germany, and Denmark).

453

454 Averaging the August counts from 2014-2023 for the Dutch Delta region (1126), Dutch Wadden
455 Sea (7325), and Lower Saxony (7017), along with the 2017 counts for Schleswig-Holstein (8250)
456 and Denmark (2490, from 2017 only), a total of 26208 harbour seals were counted. Note that these
457 numbers deviate from the internationally coordinated trilateral counts (Galatius et al., 2024), since
458 here, we calculate the average over multiple years, while the trilateral counts derive maximum
459 estimates for each given year and estimate the total population size. We used the haul-out
460 probability of 68% (Ries et al., 1998), to correct for the number of seals in the water during the
461 survey counts, resulting in an estimated average total population size of 38541 harbour seals.

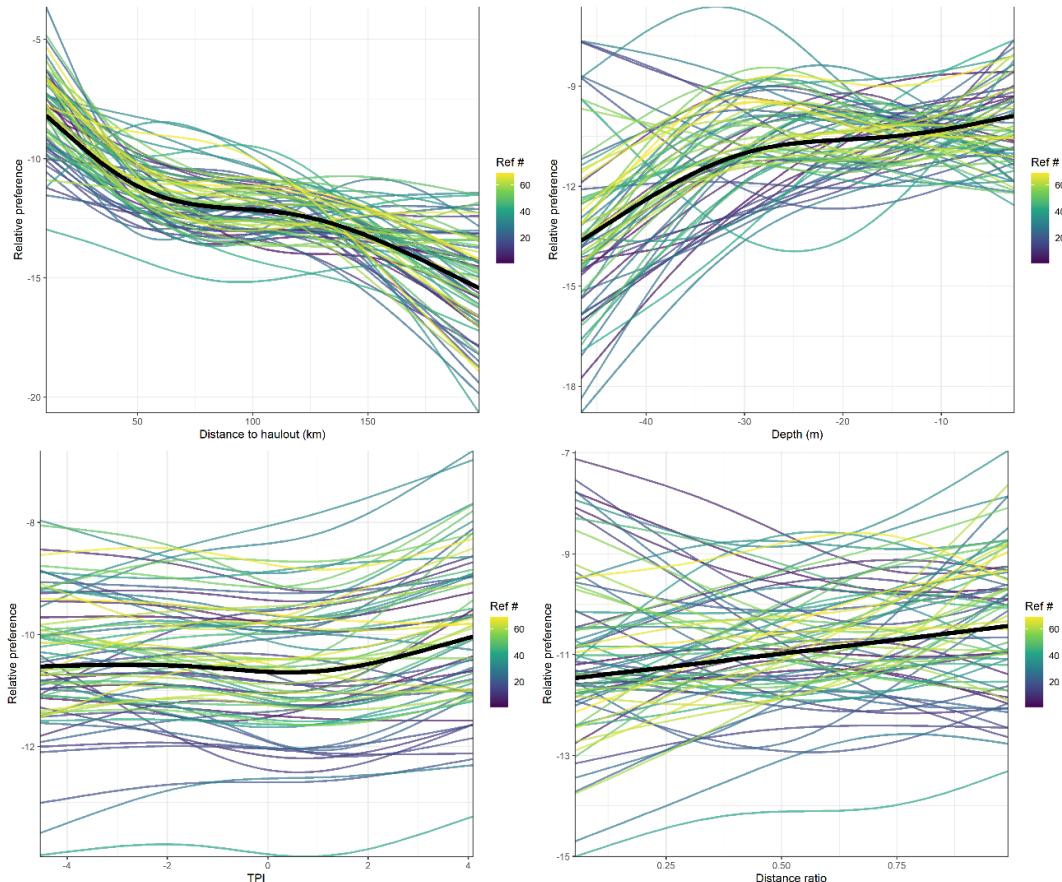

462

463 For grey seals, the ten-year averages in various regions were as follows: 1665 in the Dutch
464 Wadden Sea, 4559 in the Dutch Wadden Sea, 593 in Lower Saxony, and 1092 in Schleswig-
465 Holstein and Helgoland. In 2017, a total of 267 grey seals were recorded in Denmark. This results
466 in a total of 8,176 grey seals. Presently, there is no correction factor for the haul-out probability of
grey seals.

467 **Preferential selection of environmental variables**

468 As expected from the seal GPS data, the harbour seal habitat model estimated a strong decline
 469 in habitat use as a function of distance to the haul-out site (Fig. 4a). In relation to depth, the model
 470 showed that on average seals preferred regions of up to ~20 m depth and have a lower preference
 471 for deeper areas (Fig. 4b). Harbour seals generally seem to prefer areas with either low or high
 472 TPI values (Fig. 4c). Although the effect size was relatively small, this relationship suggests that
 473 harbour seals tend to preferentially select the holes and trenches, and the peaks and ridges, more
 474 than the flat areas or slopes of the seabed. Finally, there is a positive relationship between seal
 475 density and the “distance ratio” (Fig. 4d), with seals being more likely to select those points in
 476 space which are closest to their trip-haul-out (i.e. distance ratios of 1).
 477

478


479

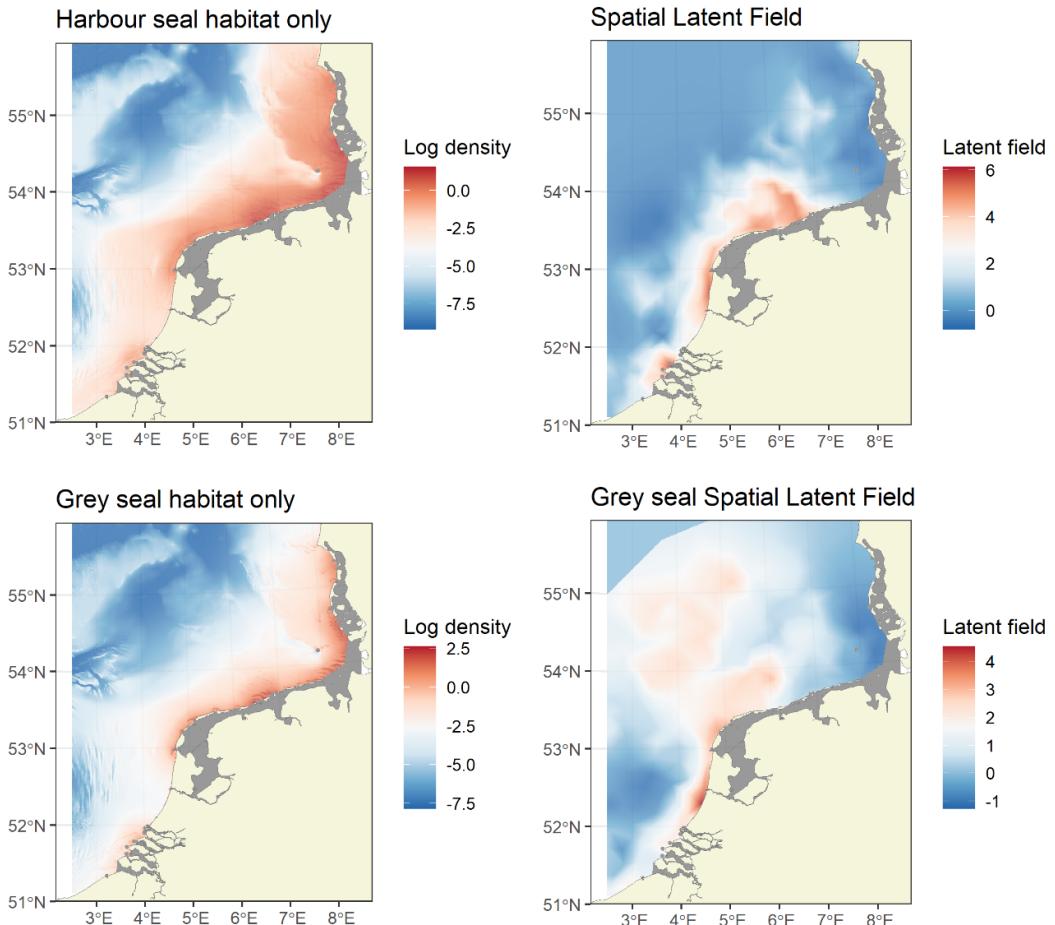
480 **Figure 4.** Variation in harbour seal density as function of the explanatory variable
 481 distance to the haul-out in km (a), depth in m (b), topographic position index (TPI)
 482 (c), and the ratio between each grid cell's distance to the nearest haul-out site and
 483 the distance to start haul-out site from which the seal is departing (or returning to)
 484 (distance ratio) (d).
 485

486 For grey seals, the relationship between relative density and the environmental covariates is
 487 fairly similar to that of harbour seals (Fig. 5). Grey seals also generally prefer areas closer but
 488 make further trips from their haul-out sites (Fig. 5a). They also prefer areas which are shallower
 489 (Fig. 5b). However, there is a risk that some collinearity between distance to the haul-out and depth
 490 (Pearson's product-moment correlation of the GPS-points = -0.548) may complicate the ability to
 491 differentiate between the effect of these two correlated variables. Overall, grey seals have a slight

492 preference for areas with high TPI values (peaks and ridges), however the estimated effect size is
 493 small and is characterized by large variation between-individuals (Fig. 5c). Similarly to harbour
 494 seals, there is a weak positive relationship between seal density and the “distance ratio” (Fig. 5d).
 495

496

497


498 **Figure 5.** Variation in grey seal density as function of the explanatory variable
 499 distance to the haul-out in km (a), depth in m (b), topographic position index (TPI)
 500 (c), and the ratio between each grid cell's distance to the nearest haul-out site and
 501 the distance to start haul-out site from which the seal is departing (or returning to)
 502 (distance ratio) (d).

503

504 **Unexplained spatial variation: Residual latent fields**

505 While a large part of the spatial variation in seal density can be explained by the environmental
 506 variables (see also Fig. 6a, c), the global and individual-specific latent fields also absorb a large
 507 part of the variation. For example, for harbour seals the global latent field (Fig. 6b) shows high
 508 density in the South near the Delta region, along the northern part of the Dutch mainland coast,
 509 and the region North of the Ems estuary along the border between the Netherlands and Germany.
 510 For grey seals, the latent field shows relative higher density along the central part of the Dutch
 511 mainland coast, and slightly higher density northwards, but otherwise, no large discrepancies
 512 elsewhere.
 513

514

515

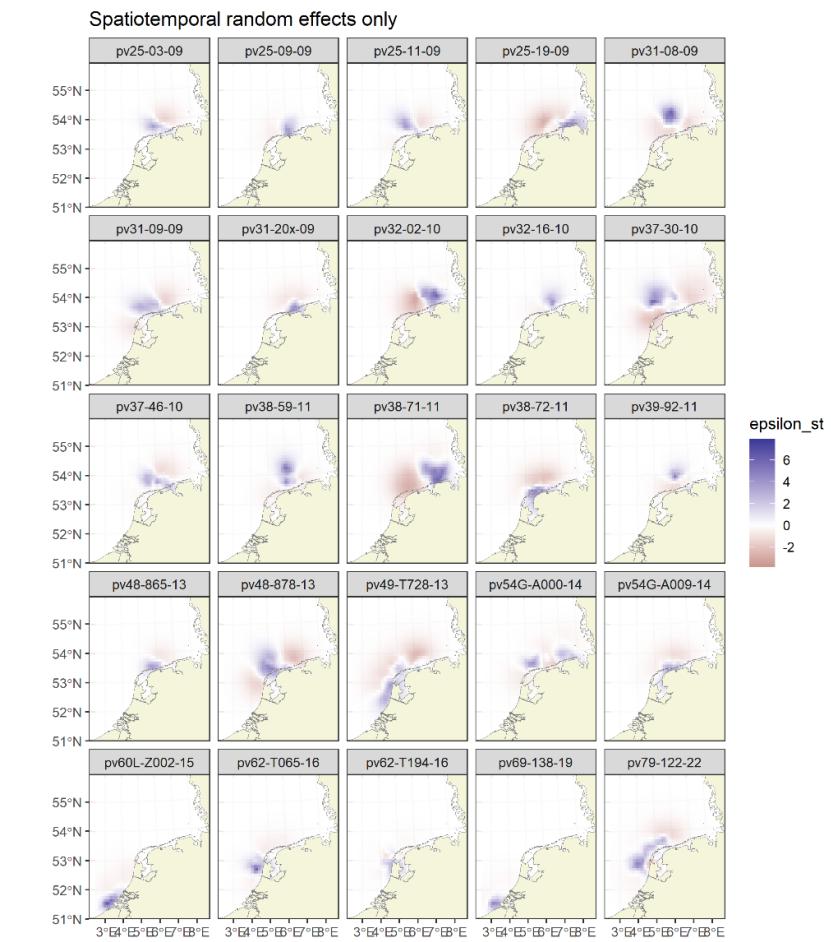
516
517
518

Figure 6. The estimated density of seals consists of the modelled density based on environmental variables (left column) and the unexplained spatial variation as captured by the spatial latent field (right column).

519
520
521
522

In addition to the global latent field, individual-specific latent fields also account for considerable unexplained variation in seal density (Fig. 7 and 8). As expected, there is considerable variation among individuals, with some regions being used more intensively than predicted by the habitat model, while others are underutilized in relation to the habitat model.

523
524

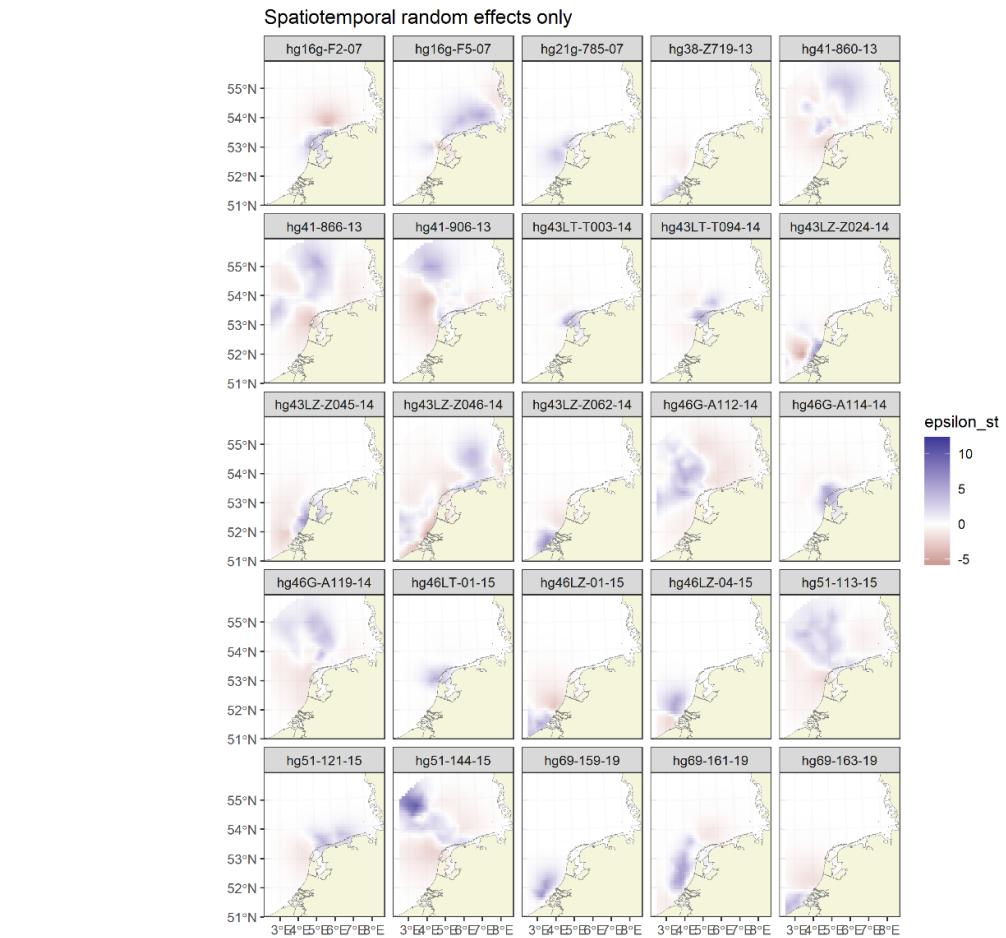

525

526

527
528

529
530

531


Figure 7. Individual-specific latent fields of a random selection of 25 individual harbour seals (individual IDs are shown in panel title).

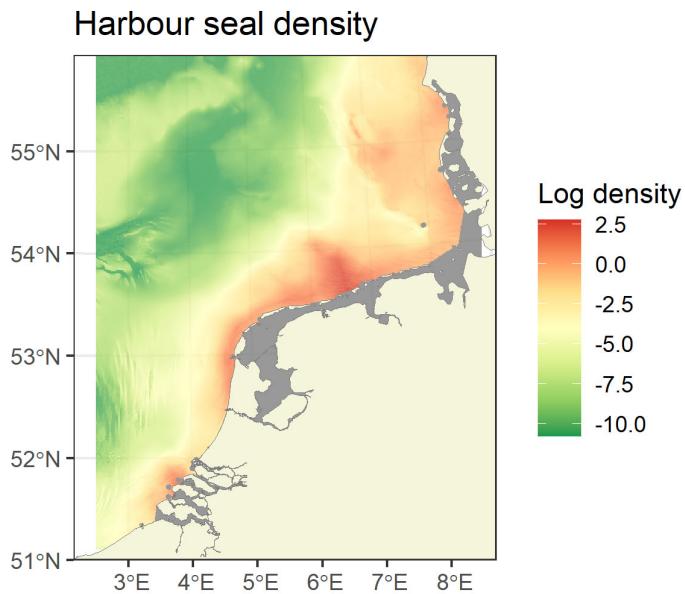
532

533
534

535

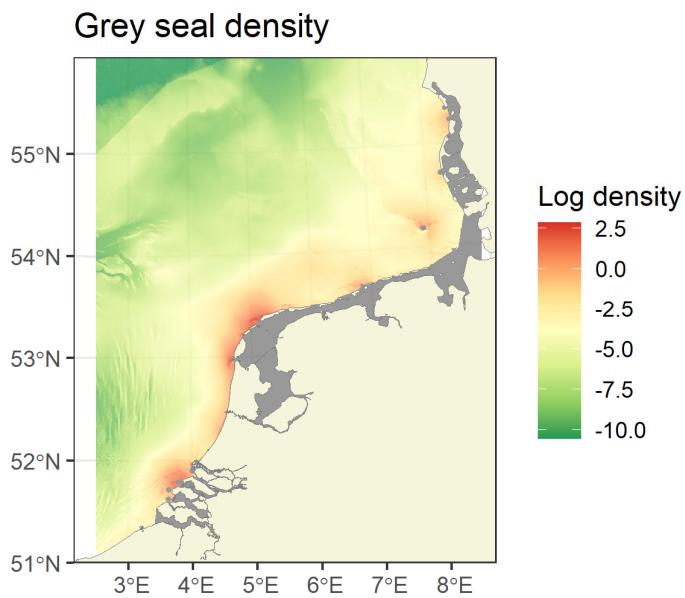
536

Figure 8. Individual-specific latent fields for of a random selection of 25 individual grey seals (individual IDs are shown in panel title).


551
552

The predicted distribution of seals at sea, which takes into account the observed number of seals on the haul-out site is shown in Fig. 9 (for harbour seals) and Fig. 10 (for grey seal). These distribution maps have a 200 x 200m resolution and reflect seal density (i.e. number of seals per km²). As an example, Appendix A, Fig. A3 shows those predictions for two arbitrarily selected haul-out sites. The estimated density consists of two components; the predicted density derived from the global estimates of the habitat model (indicated by the thick black lines in Fig. 4 and 5, and used for spatial prediction in Fig. 6a and 6c) and the global spatial latent field (shown in Fig. 6b and 6d). The density of harbour and grey seals was highest near the haul-out sites. It is important to note, however, that in the Danish and German region, the predicted density was more uniformly distributed within the foraging range, in contrast to the Dutch area, for which tracking data were available. The variation in the latent field estimates accounts for part of this regional difference, as these latent field estimates can only be derived for regions with available tracking data. Beyond a specific depth (~30-40m), there is a considerable decline in seal density, which is also reflected in the preferential selection curves presented in Fig. 4 and 5.

553


554
555
556

557

Figure 9. The estimated population density (on log-scale) of harbour seals based on the habitat model and global latent field, also taking into account the average numbers of seals on the haul-out sites observed during the moult season (August).

558

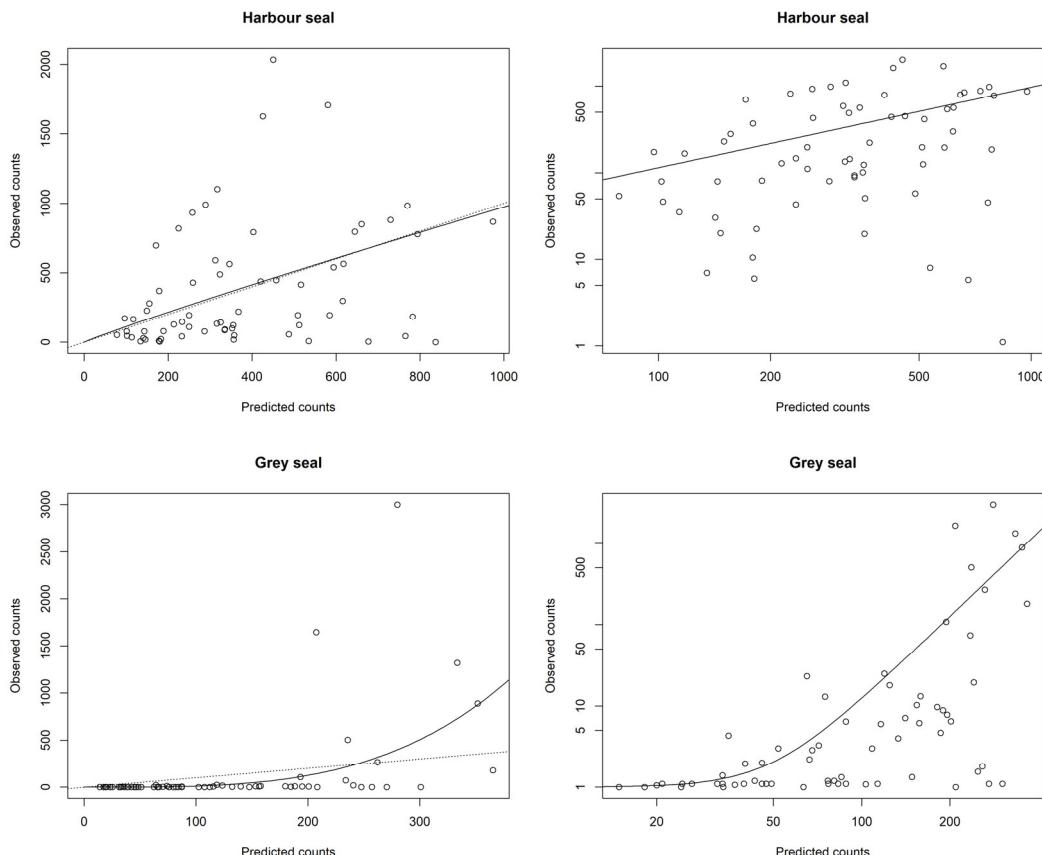

559
560
561
562
563

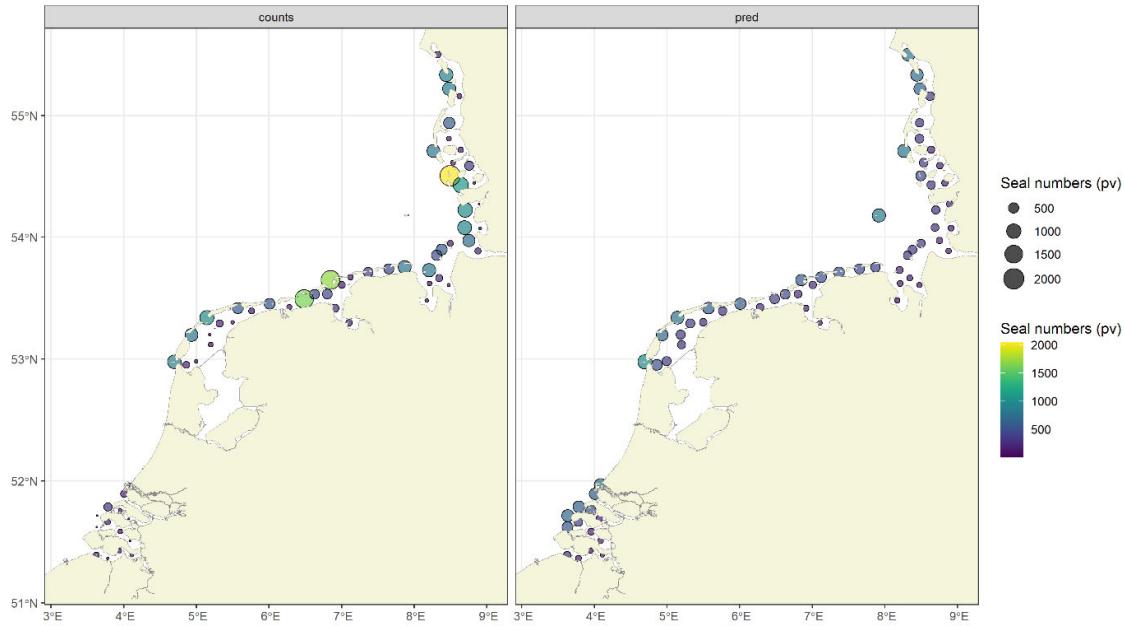
Figure 10. The estimated population density (on log-scale) of grey seals based on the habitat model and global latent field, also taking into account the average numbers of seals on the haul-out sites observed during the moult season (March/April).

564 **Habitat-based predictions of colony size**

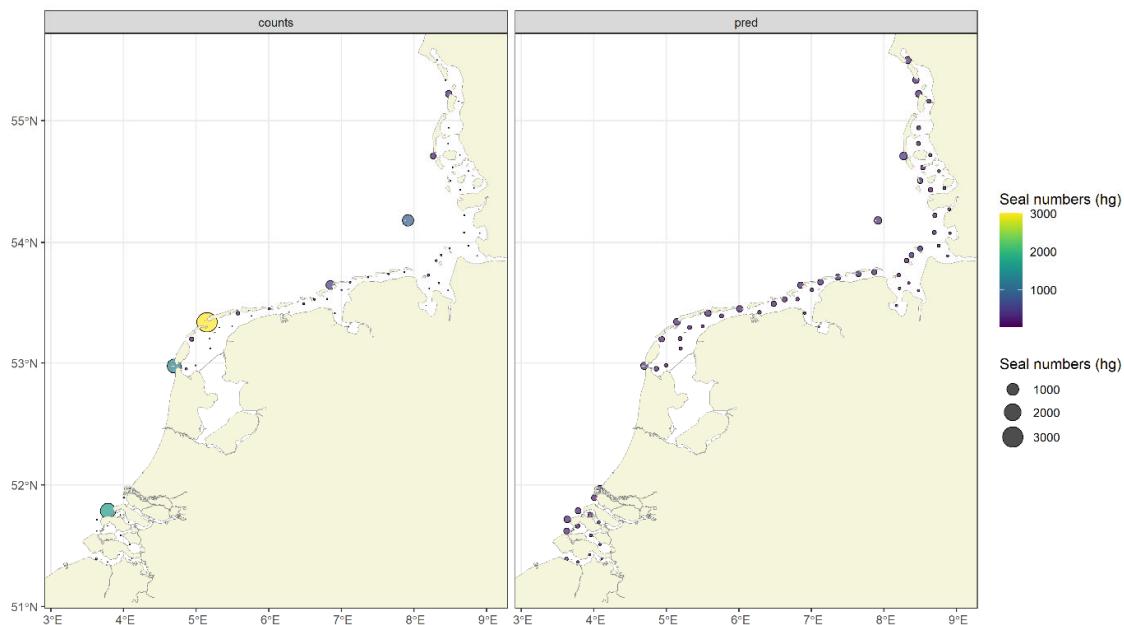
565 Replacing the variable “distance to the trip haul-out” with “distance to the nearest haul-out”
 566 allows for the creation of a single usage map of seal distribution for the entire study area
 567 (independent of the location of haul-out sites). Subsequently, the seal usage in each cell can be
 568 distributed among the haul-out clusters. The habitat-based predictions of the number of seals at
 569 each cluster were significantly correlated with the observed counts for both harbour seals (Fig. 11a
 570 and 11b) and grey seals (Fig. 11c and 11d). The p-values of the slope parameter relating these
 571 predicted counts with observed counts were 3.4e-05 and < 2e-16, respectively. Also note that the
 572 slope coefficients were close to 1 for harbour seals (0.9308), but substantially higher for grey seals
 573 (3.40). In comparison to the predictions, the observed counts show considerable over-dispersed,
 574 indicating that seals tend to cluster in larger groups. For example, the highest prediction for harbour
 575 seals is just under 1000, whereas the observed counts surpassed this value at several haul-out
 576 clusters, with one specific haul-out cluster exceeding 2000. The observed grouping of grey seals
 577 was even more pronounced; the highest prediction was 365 individuals, whereas the largest
 578 observed haul-out count reach 3000 individuals, tenfold higher.

579

580


581

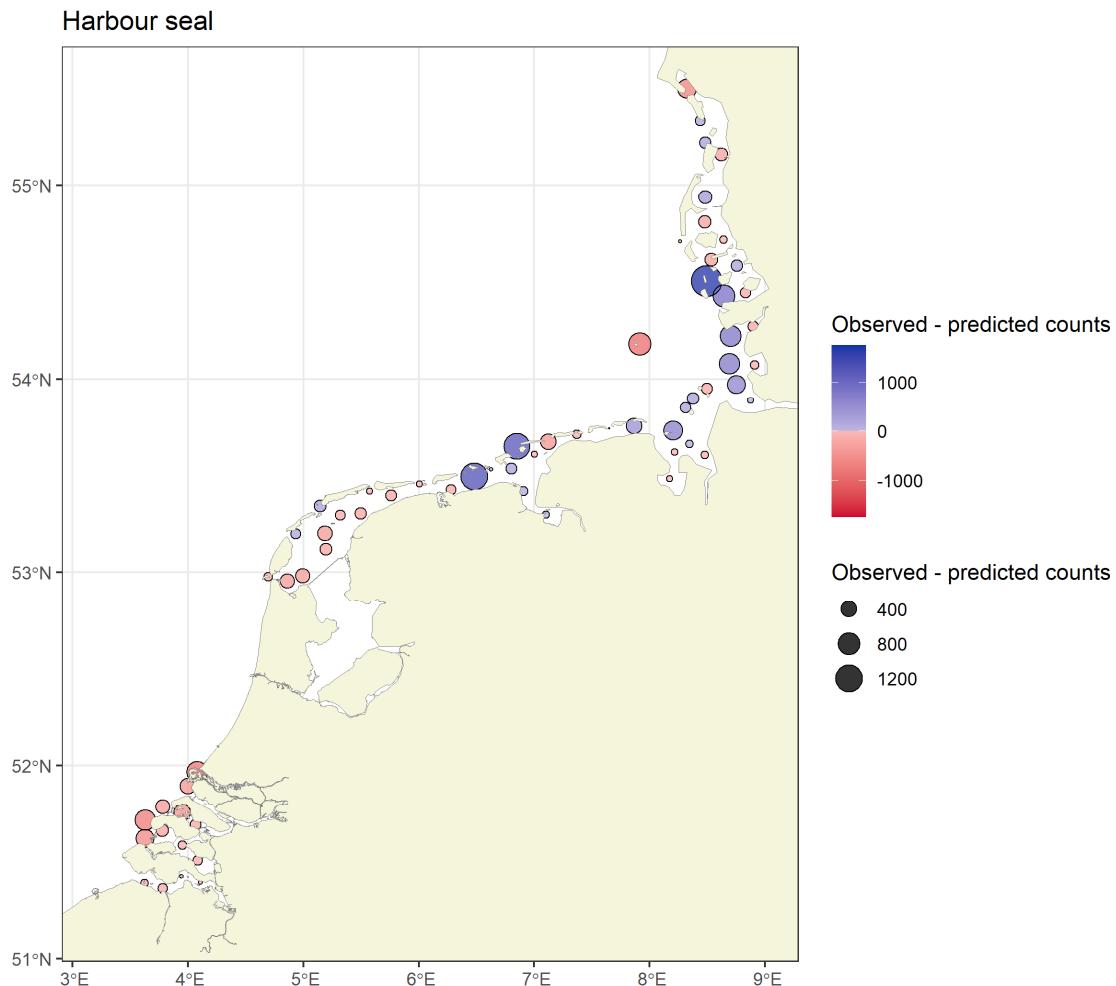
582


583 **Figure 11.** The relationship between predicted counts on haul-out clusters (derived
 584 from the habitat model) and the observed counts for each haul-out cluster. The left
 585 and right figures are identical, with the exception that the x and y axes in the right
 586 figures, are represented on a logarithmic scale. The solid black line reflects the slope
 587 of the generalized linear model fitted to the data points. The dotted line represents

588 a 45°-degree line (e.g. slope of 1) through 0. Note, for harbour seals (top figures)
589 this line is almost identical to the fitted curve.

590 Fig. 10a and 11c show the observed distribution of seals on land (based on 10km maximum
591 distance clustering) and Fig. 10b and 10d the predicted number of seals on each haul-out site. For
592 both harbour and grey seals, the model predicts a more uniform distribution of animals across the
593 haul-out clusters than was observed in the data. And as expected, the highest numbers of seals
594 are predicted to occur on the haul-out sites bordering the Wadden Sea, rather than further inside
595 the Wadden Sea bordering the mainland coast. This is also observed in the count data. Peak
596 predictions occur on those haul-out sites with a large Hinterland, such as the Razende Bol (a sand
597 bank between the most western Wadden Sea island and the mainland) Helgoland (the only island
598 offshore in the German Bight).

599

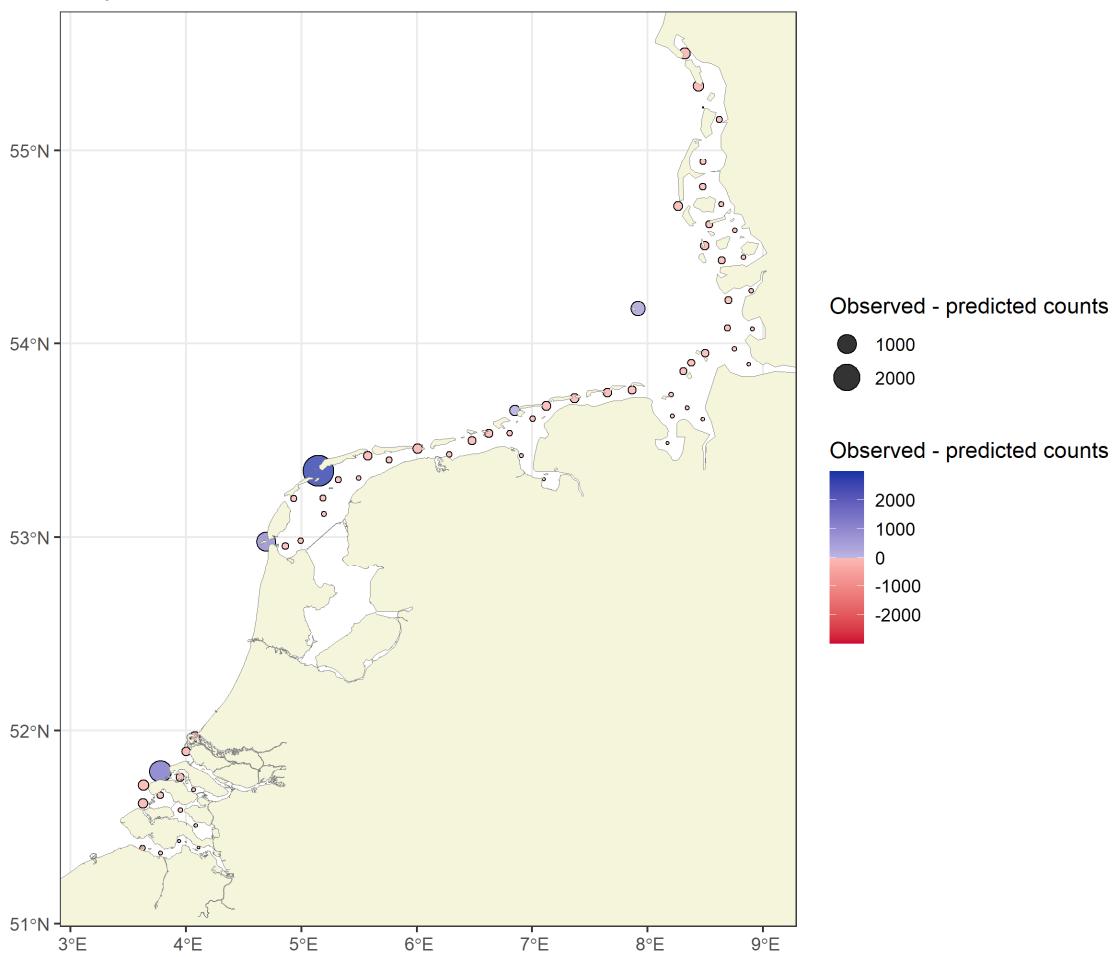


600

601 **Figure 12.** Left panels: The observed number of seals for each haul-out cluster (10
 602 km maximum distance clustering) (a) for harbour and (c) for grey. Right panels: The
 603 predicted number of seals on each haul-out cluster based on the habitat model (b)
 604 for harbour and (d) for grey.

605 When we compare the observed versus predicted seal distribution, a pattern emerges. Some
 606 haul-out clusters are used by substantially more seals than predicted (i.e. blue coloured circles,
 607 Fig. 13). In the eastern Wadden Sea, the observed numbers of Harbour seals exceed the
 608 predictions made by the model. In comparison to the model predictions, Schleswig-Holstein as
 609 well as the region surrounding the Ems Estuary at the Dutch-German border, contains substantially
 610 more harbour seals. These regions are characterized by relative high number of pups observed

611 during the breeding season. Helgoland, the rocky island offshore in the German Bight of the North
612 Sea, has substantially less seals than predicted by the model (red/pink coloured circles). Another
613 region with far fewer seals than predicted by the model is the Delta area in the South of the
614 Netherlands. All haul-out sites contain fewer seals than predicted by the model. Population survey
615 data show that harbour seal numbers continue to increase in this region.
616



617

618 Figure 13. Absolute difference between the observed and predicted number of
619 seals. Blue dots represent haul-out sites where more seals are observed
620 than predicted by the model. Red dots are haul-out sites with fewer observed seals
621 than predicted.
622

623 In comparison to harbour seals, grey seals are even more confined to a limited number of
624 confined haul-out sites, with the majority of these sites situated along the outer edges of the
625 Wadden Sea or Dutch Delta area. Seals are observed in significantly lower numbers than predicted
626 by the model at all haul-out sites within the inner Wadden Sea. The highest positive residual can
627 be observed near the "Engelschhoek", situated between the Wadden Sea islands of Vlieland and
628 Terschelling.
629

Grey seal

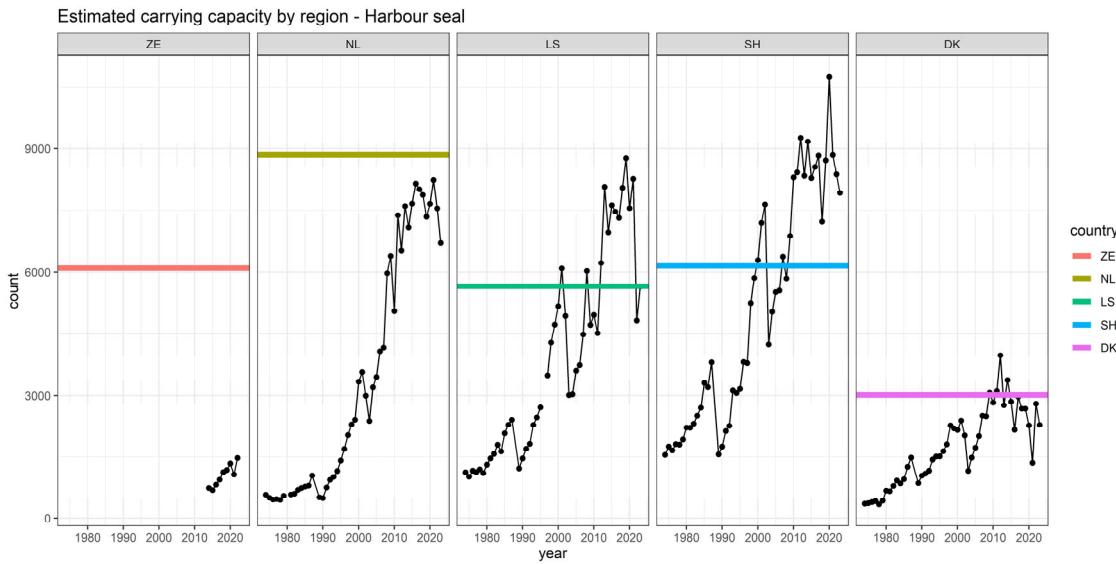
630

631

632

Figure 14. Absolute difference between the observed and predicted number of grey seals. Blue dots represent haul-out sites where more seals are observed than predicted by the model. Red dots are haul-out sites with fewer observed seals than predicted.

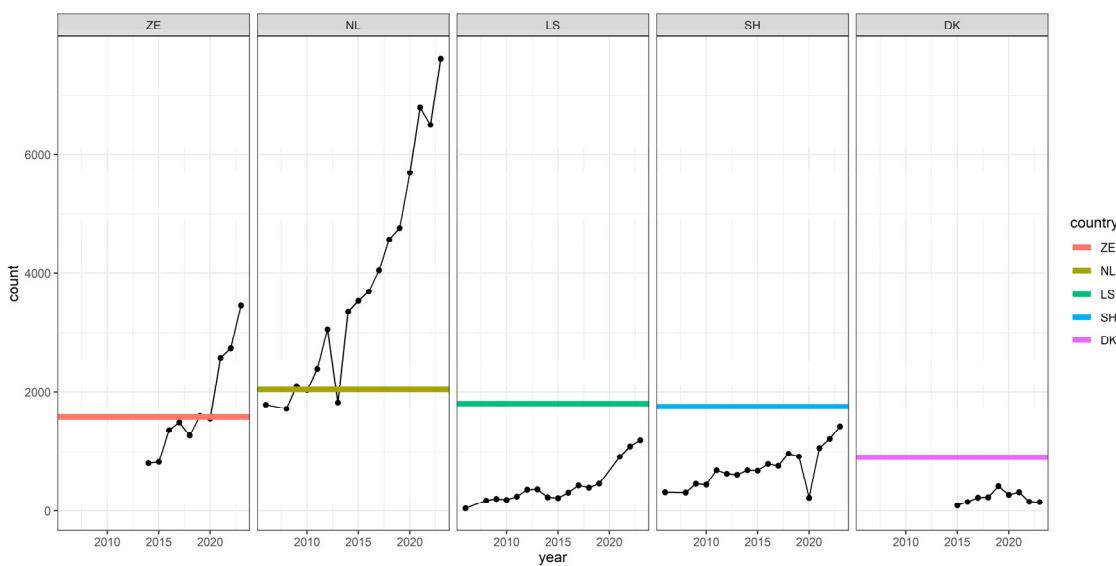
633


634

635

Based on the predictions as shown in Fig. 12, it is possible to aggregate the counts by region. Note that we assume that the total predicted number of seals for the entire Wadden sea (i.e. the Delta region excluded) are equal to the total observed number of seals, and those predicted numbers were rescaled accordingly. The implicit assumption is that seal population size has reached a carrying capacity. For the Netherlands (NL), Lower Saxony (LS) and Denmark (DK) the predicted number of harbour seals (coloured horizontal line in Fig. 15) are remarkably similar to the maximum counts observed in the different regions in the most recent years (Fig. 15). However, in Schleswig-Holstein (SH), substantially more harbour seals were observed during the moult season than predicted by the model. Schleswig-Holstein is characterized by the highest pup production of all regions. For the Delta region (ZE), the current counts are substantially lower than the habitat-based estimate of harbour seals. This is also reflected in Fig. 12, which shows far fewer observed seals than predicted by the model for this region.

648


649

650
651
652

653 **Figure 15.** Trends in harbour seal moult counts (black lines) for each of the five
654 regions, and carrying capacity as estimated by the habitat model (coloured lines).
655 The five regions are the Delta area (ZE) and in the Wadden Sea: the Netherlands
656 (NL), Lower Saxony (LS), Schleswig-Holstein (SH) and Denmark (DK).

657
658

659
660
661

662 **Figure 16.** Trends in grey seal moult counts (black lines) for each of the five regions,
663 and carrying capacity as estimated by the habitat model (coloured lines). The five
664 regions are the Delta area (ZE) and in the Wadden Sea: the Netherlands (NL),
665 Lower Saxony (LS), Schleswig-Holstein (SH) and Denmark (DK).

666

Discussion

668 This study's primary objective was to determine whether the abundance and distribution of
669 harbour or grey seals on land could be explained by the quality and availability of foraging habitat
670 types at sea. If so, this relationship could be utilized to estimate the carrying capacity of a
671 population. Indeed, the number of seals predicted by the habitat model was significantly correlated
672 with the number of seals found on land during the aerial surveys for both species. When these
673 predicted counts for harbour seals within each of the survey regions were aggregated, serving as
674 a proxy for a regional carrying capacity, overall, those estimates showed resemblance with the
675 maximum moult counts observed for most regions. These are promising findings, as they
676 demonstrate that the quality of habitat at sea can provide valuable information regarding the
677 distribution and population size of seals on land. Furthermore, it also implies that the land-based
678 aerial survey counts could potentially serve as valuable indicators of the quality and availability of
679 habitats in the surrounding seascape and changes that might occur. However, there are also
680 considerable discrepancies between the observed and predicted numbers at the different haul-out
681 sites, which could potentially be explained by anthropogenic disturbances, intraspecific
682 competition or facilitation and food availability, and these effects should be included in future
683 studies.

684

685

686 **Habitat selection**

687 The habitat model was fitted to the GPS locations, capturing the variations in seal density as a
688 function of environmental variables. This dependence was used for spatial predictions of at-sea
689 density for the part of the North Sea bordering the Dutch, German and Danish coastline. The model
690 showed that, by far, most variation in density at sea could be explained by the distance to the haul-
691 out site. Furthermore, the residual variation in seal density showed a peak preference for regions
692 of ~20 m depth, a preference for areas with low mud-content and areas with a low TPI for both
693 species (e.g. gullies, trenches, and holes and also high TPI for harbour seals (e.g. peaks and
694 ridges).

695 The strong tendency of seals to stay closer to the haul-out sites may be explained by their
696 attempt to minimize travelling costs (Matthiopoulos, 2003). Since most trips were observed to be
697 relatively short (<20h) and the seal's cruising speed is relatively slow (~1 m/s), most feeding trips
698 are expected to be within 36 km from the haul-out site, or even closer, to leave sufficient time to
699 forage (although they may also search for prey while travelling (Vance et al., 2021)). However,
700 heterogeneity in habitat quality may cause some patches further offshore to be more profitable,
701 forcing them to make longer and further foraging trips. Also, seals may deplete prey resources in
702 the vicinity of the colony, forcing animals to go further away. This process is known as density
703 dependent competition and has been observed for other species (e.g. for northern gannets (*Morus*
704 *bassanus*), see (Wakefield et al., 2013)). Depth also proved to be an important explanatory
705 variable, suggesting that seals tracked in this area have a strong preference for depths ~20m, and
706 making less use of areas that are deeper. Apparently, those areas provided sufficient prey for
707 seals, making it unnecessary to dive deeper. Although seals could easily dive to greater depth
708 (i.e. harbour seals 480m, (Eguchi & Harvey, 2005) and 477 for grey seals (Boehme et al., 2012)),
709 any time spent diving is potentially deducted from the available foraging time near the bottom, and
710 this might explain the avoidance of deeper depths. Why seals avoid more shallow waters is
711 unclear, but this could possibly be because of prey preference or competition with other air-
712 breeding species (e.g. diving birds, like cormorants (*Phalacrocorax carbo*)) or smaller-sized
713 conspecifics (e.g. juvenile (0-year-olds) seals that are not tagged). However, it might also be
714 caused by collinearity with other environmental variables not included in the model, such as wave-
715 related bottom sheer-stress or human use. Finally, seals are also more likely to be found in areas
716 with high TPI (i.e. places that peaks and ridges) and for harbour seals also low TPI (i.e. gullies and
717 trenches). These geomorphological features may serve as prey aggregation sites and/or enhance

718 prey capture success (Wyles et al., 2022). The estimated effect of these environmental variables
719 on seal distribution is however substantially smaller than the effect of distance to the haul-out and
720 depth. Finally, the ratio between the distance to the nearest haul-out site and the distance to the
721 start haul-out site shows that seals are more likely to stay within their 'Hinterland' and as a result
722 create spatial segregation between neighbouring colonies. This is an important result, because it
723 indicates the possibility of designating particular marine areas and their associated foraging
724 habitats to terrestrial haul-out sites, and this could be a valuable tool for designation of protected
725 areas on land or at sea.

726

727 **Delays in redistribution: non-ideal and non-free distribution**

728 While the habitat model is capable of predicting the number of seals found ashore during the
729 aerial surveys, there are still substantial discrepancies between the predictions and observations.
730 Part of this could be because of a misspecification of the habitat model. Environmental variables
731 that may change over time for example changes in prey availability, inter- and intraspecific
732 competition, and human activities (e.g., shipping, seismic surveys, and the construction of wind
733 farms) are currently not included in our model. For example, during construction of offshore wind
734 farms pile-driving was shown to deter both grey and harbour seals up to a distance of 40km (Aarts
735 et al., 2018; Russell et al., 2016). Similarly, operational wind farms, shipping noise, explosions at
736 sea and seismic surveys may also deter seals (Jansen et al., 2010; Jones et al., 2017; Tougaard
737 et al., 2009). Similar impacts have been found for other species, like harbour porpoises (*Phocoena*
738 *phocoena*) (Aarts et al., 2016; Thompson et al., 2013; von Benda-Beckmann et al., 2015), and
739 ringed seals (*Pusa hispida*) (Harris et al., 2001). Adding these anthropogenic factors into the model
740 in future studies might improve explaining current seal distribution.

741 It seems that the largest discrepancies between observed and predicted numbers are caused
742 by delays in redistribution (Fig. 11). These delays may be the result of both seasonal and
743 interannual movements. Some regions in the Wadden Sea take up a much larger share of the total
744 reproduction. For example, the majority of harbour seal pups are born in Schleswig-Holstein, which
745 was also historically the population stronghold prior to its recovery (Brasseur et al., 2018).
746 (Brasseur, 2017) showed that many individuals, mostly adult females, move from the Netherlands,
747 as far as the Delta region, to the German Wadden Sea to pup. After the breeding season,
748 individuals tagged in the eastern Dutch Wadden Sea move on average more in western direction,
749 presumably to return to feed in more suitable foraging areas. In this study we relied on August
750 counts for harbour seals, when many individuals might still reside close to the breeding areas,
751 creating a mismatch between the distribution of high-quality foraging areas and the distribution of
752 seals on land. If we would have been able to rely on international Wadden Sea counts collected
753 later in the year (e.g. the winter months), it is expected that there would be a more accurate
754 correspondence between the predicted and observed haul-out counts.

755 In addition to seasonal delays, there might also be multi-year delays. The harbour seal
756 population declined due to hunting until the 1970's. After the ban, the population was also affected
757 by disease (i.e. Phocine morbillivirus, formerly known as phocine distemper virus (PDV)) and
758 pollution (i.e. contamination of polychlorinated biphenyls (PBC's)) but overall recovered over the
759 following decades. The numbers in the Delta are still increasing, while numbers in all Wadden Sea
760 regions have now levelled off (or are even in decline). The estimated carrying capacity based on
761 the habitat model suggests that harbour seal numbers in the Dutch Delta might still increase to
762 more than five thousand individuals. Interestingly, this estimate corroborates the figure of 4000
763 animals estimated by (Reijnders, 1994), which was derived from hunting statistics.

764 The estimated carrying capacity for harbour seals, however, does not take other predators into
765 account, such as grey seals or harbour porpoises. Grey and harbour seal may compete for haul-
766 out space, and they, but also porpoises, show overlap in diet. The largest proportion of grey seals
767 in the Southeastern North Sea are observed on haul-out sites in the Netherlands, both in the
768 Wadden Sea, and the Delta region (Fig. 10). In addition, approximately 40,000 harbour porpoises
769 are estimated to reside in Dutch waters (Geelhoed et al., 2020). Grey seals have higher food intake

770 than harbour seals but might also target fish that are less accessible to harbour seals, for example
771 by selecting foraging areas further offshore. In lack of data, it is difficult to assess effects of
772 porpoises, but elaborating our models by including grey seals might help explaining the current
773 distribution of harbour seals. Incorporating grey seal numbers into the calculation may improve the
774 estimate for both the Netherlands (Wadden Sea and Delta) and Schleswig-Holstein, which
775 currently appears inconsistent with the counts (Fig. 15). Most grey seals are found in Dutch Waters,
776 and this may explain part of the overprediction in this region, while in Schleswig-Holstein contains
777 fewer grey seals. In this region, the model underpredicts the harbour seal numbers. An overall
778 rescaling of the carrying capacity estimate may yield a more accurate prediction of seal numbers
779 in accordance with the habitat model for that region.

780 In summary, one of the core assumptions of the approach used is that seals have an ideal-free
781 distribution. This implies that they have perfect information about the distribution and quality of all
782 habitats and select them accordingly (i.e. their distribution is 'ideal') and that they have the ability
783 to enter all habitats equally (i.e. they are 'free'). Both assumptions are questionable, and
784 particularly the latter one. The current harbour seal distribution is potentially affected by natural
785 factors like the distribution of prey or other predators and might still be affected by historical human
786 activities (hunt and pollution) or even more recent growth in human use of the area. Nevertheless,
787 the ideal-free distribution and the method used in this study can be a valuable null model, which
788 can be used to detect discrepancies, which can be informative about the underlying biological
789 processes, like the delays in redistribution and inter-specific competition.
790

791 **Implications and applications:**

792 While the model is capable of predicting the number of seals on the haul-out sites based on
793 the availability of suitable habitat within the surrounding waters, there are considerable
794 discrepancies. One valuable application is that large discrepancies between the model and count
795 data could also serve as indicators, signalling areas where other processes might be ongoing and
796 further investigation is needed. For example, this analysis only incorporated natural and fixed
797 environmental variables to explain the distribution of seals and predict their onshore abundance.
798 In the future this could be extended by including anthropogenic structures or activities and changes
799 in these over time. Potentially, human activities could affect the suitability or accessibility of habitat
800 and resources. Throughout the past decade there has been a significant rise in human use of the
801 area used by seals (Martins et al., 2023; Robbins et al., 2022; Xu et al., 2020). For a large part,
802 current seal tracking data used for this study, preceded these changes.

803 When there is sufficient support in the seal tracking data to estimate the effect of these human-
804 related variables on seal density, it is possible to estimate how this could translate into population
805 consequences. In some cases, these population-level effects could be temporary, in which case
806 more complex individual-based on dynamic population model might be additionally required to
807 derive the population consequences. However, when the effects are more permanent, like a
808 permanent partial or complete exclusion, it would be possible to use the approach presented here
809 derive how this would translate in (regional) declines in carrying capacity, reflected in changes in
810 number of seals. This analysis could be achieved by incorporating explanatory variables related
811 to those anthropogenic variables into the species-habitat-association model. Those anthropogenic
812 variables could include the proximity to the nearest hard structure, such as rocks, wrecks,
813 pipelines, oil- and gas platforms, and windmills (Martins et al., 2023; Russell et al., 2014). Hard
814 structures typically lead to increased turbulence in their wake (Schultze et al., 2020), causing
815 reduced mud concentrations and higher median grain sizes in the surrounding areas; these habitat
816 conditions are generally favoured by grey and harbour seals. The impact of offshore wind farm
817 construction and operation could also be investigated. It has been demonstrated that pile-driving
818 during construction can result in changes in dive behaviour and movement (Aarts et al., 2018;
819 Russell et al., 2016), as well as the avoidance of the construction area (Russell et al., 2016). Seals
820 may also be deterred by the visual rotation of the blades and the underwater sound produced by
821 the rotation, as well as maintenance activities. To capture these effects, the distance to wind farm

822 under construction or the distance to a windfarm in operation could be included as a covariate.
823 Also shipping activity may deter seals (Jones et al., 2017). Shipping density maps are derived from
824 AIS data, and monthly estimates grouped by vessel type are (freely) available from EMODnet for
825 the years 2017-2023. Fishing intensity, defined as fishing vessel density by gear type and the
826 average surface or sub-surface swept area ratio, can also be incorporated as a model covariate.
827 Care must be taken in interpretation, as fishing activities influence fish abundance; however, their
828 distribution is also closely linked to biotic and abiotic habitat characteristics, such as sediment
829 composition and fish density. Finally, the proximity to seismic surveys and detonations of
830 unexploded ordnance (UXO) could also be included into the species-habitat relationship model.
831 The seismic surveys appear to have little overlap with the seal tracking and the data may be
832 insufficient to derive their association. For the detonations, detailed information on the exact timing
833 of the detonations is available for a number of years (Aarts et al., 2016; von Benda-Beckmann et
834 al., 2015). An interaction smooth term between distance and time to the detonation could be
835 included as covariate to capture persisting avoidance of regions where seals were exposed,
836 however, more detailed analysis of individual tracking data and behavioural responses might be
837 required. After estimating the impact of the various human-related variables on seal distribution,
838 the methodology proposed in this study can be used to predict regional population sizes both with
839 and without these anthropogenic covariates. Once fully developed, this could in theory be used to
840 predict population-level consequences of human activities and infrastructure.

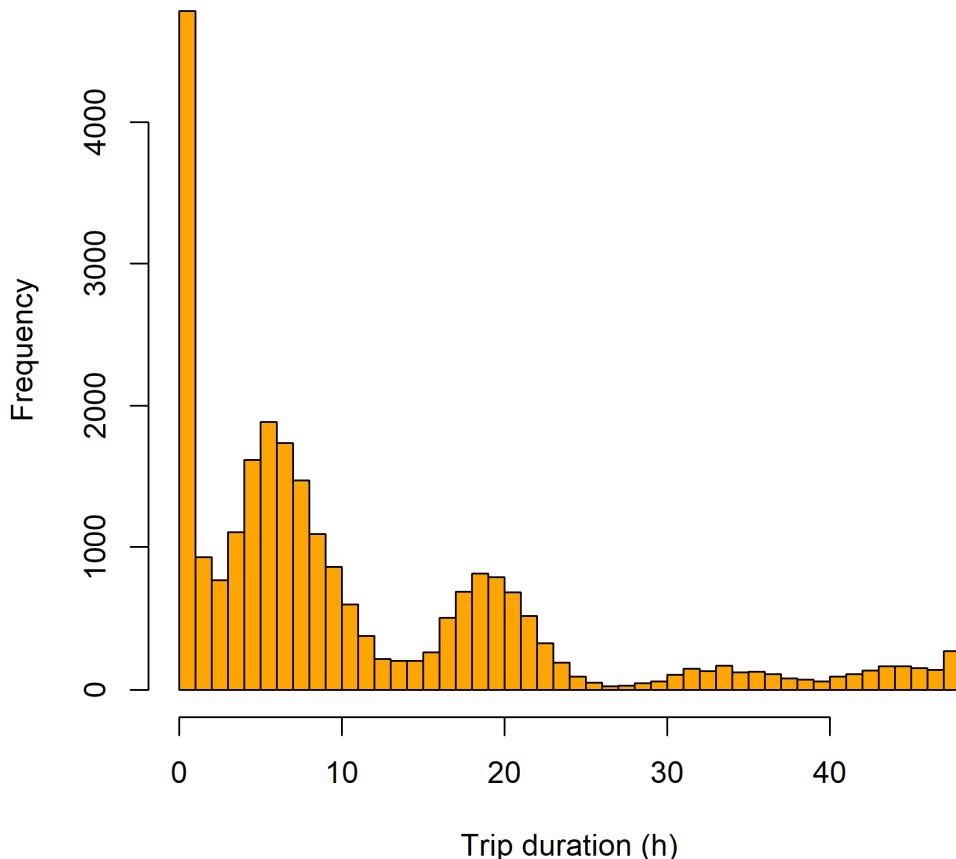
841 Another application of the method is to estimate other potential suitable haul-out sites.
842 Currently, the entire beach along the west-coast of the Netherlands is accessible to the public, and
843 this is assumingly why seals only rarely haul-out on this stretch of the coast. As a consequence,
844 seals foraging off the coast have to haul-out either in the Wadden Sea in the North (like the
845 Razende Bol) or in the Delta in the South. If seals are able to haul-out in closer proximity to their
846 feeding grounds, this could vastly reduce their energetic costs. As a consequence, the method
847 proposed here could help decide where to locate a permanent closure of the beach closure or an
848 artificial haul-out off the west coast and as a result, increase harbour seal population size.

849 850 **Future model improvements**

851 An implicit assumption of the method used in this study is that each cluster of haul-out sites
852 has reached its carrying capacity. This assumption may not be valid. For example, the seal
853 population in the Dutch Delta continues to increase and may continue to do so in the years to come
854 since the estimated carrying capacity is substantially higher than the regional counts. Also, the
855 Dutch part of the Wadden Sea might not yet be fully saturated by harbour seals, as suggested by
856 figure 13 (negative residuals). By modelling the observed counts as function of the habitat-based
857 predicted counts, transients in population size and other population dynamic processes are not
858 captured. Instead, one could model the regional population *growth rate* as function of the
859 availability and quality of habitats (Matthiopoulos et al., 2015). This approach has, for example,
860 been applied to house sparrows (Matthiopoulos et al., 2019). In addition, habitat selection itself
861 may change as function of population size (Avgar et al., 2020), known as functional response in
862 habitat use (Aarts et al., 2013; Matthiopoulos et al., 2011). To capture this aspect, one could
863 include a (smooth) interaction term between an environmental variable and regional population
864 size.

865 Another feature of the method that could be improved is the estimation of the Hinterland. The
866 traditional approach is to define the Hinterland as equidistant Voronoi tessellations. This, however,
867 assumes that individuals from neighbouring colonies do not overlap in their foraging distribution.
868 This is unlikely, particularly when the difference in distance between a foraging location and two
869 or more colonies/haul-out sites is neglectable. In the current model, overlap in foraging distribution
870 is partly captured by modelling the ratio between the nearest haul-out and the trip haul-out. This is
871 however, a relative simplistic formulation, and does not include differences in colony size and the
872 resulting difference in density dependent competition which may 'push' and 'pull' foraging
873 distributions of neighbouring colonies (Aarts et al., 2021; Riotte-Lambert et al., 2015; Wakefield

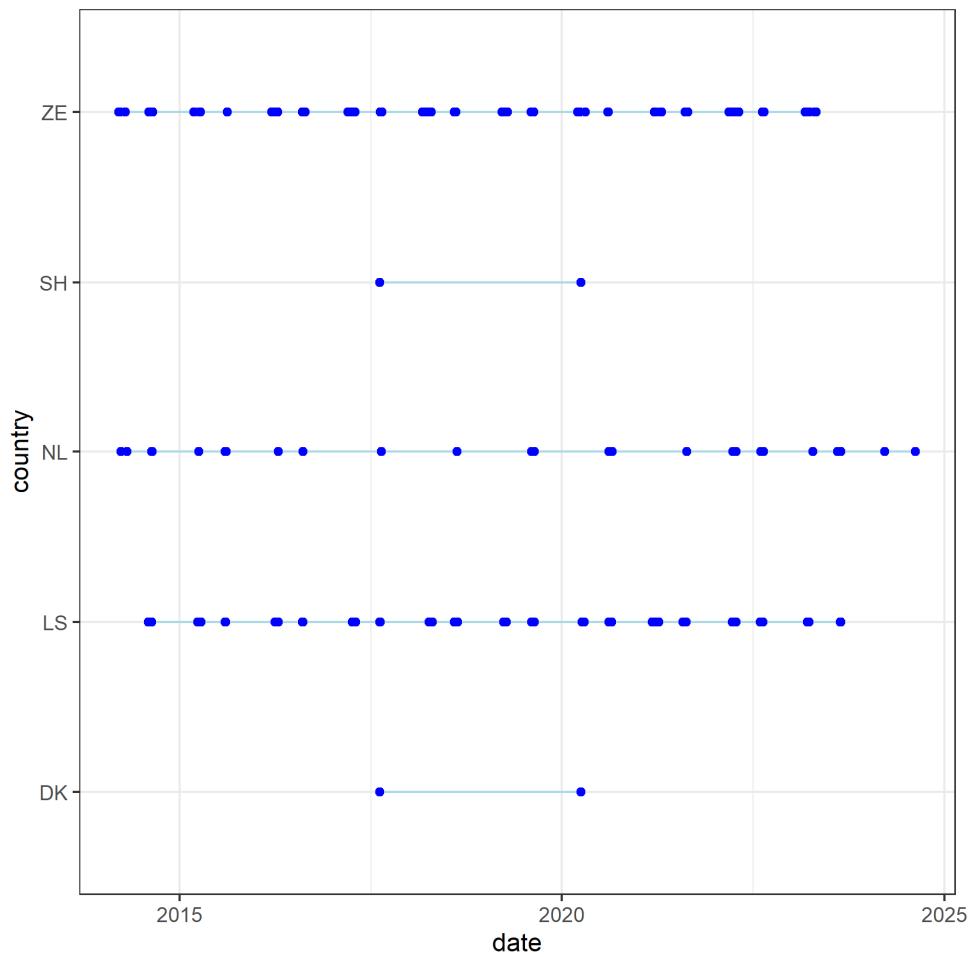
874 et al., 2013). An alternative approach would be to include individual-based models, or fit a more
875 mechanistic dispersion model to tracking data, as proposed by (Niven et al., n.d.). Including more
876 realistic and accurate estimates of the Hinterland and incorporating population dynamic processes
877 in the approach may lead to a closer correspondence between the observed and predicted
878 distribution, and more reliable estimates of the population potential of each haul-out site.
879


880

881

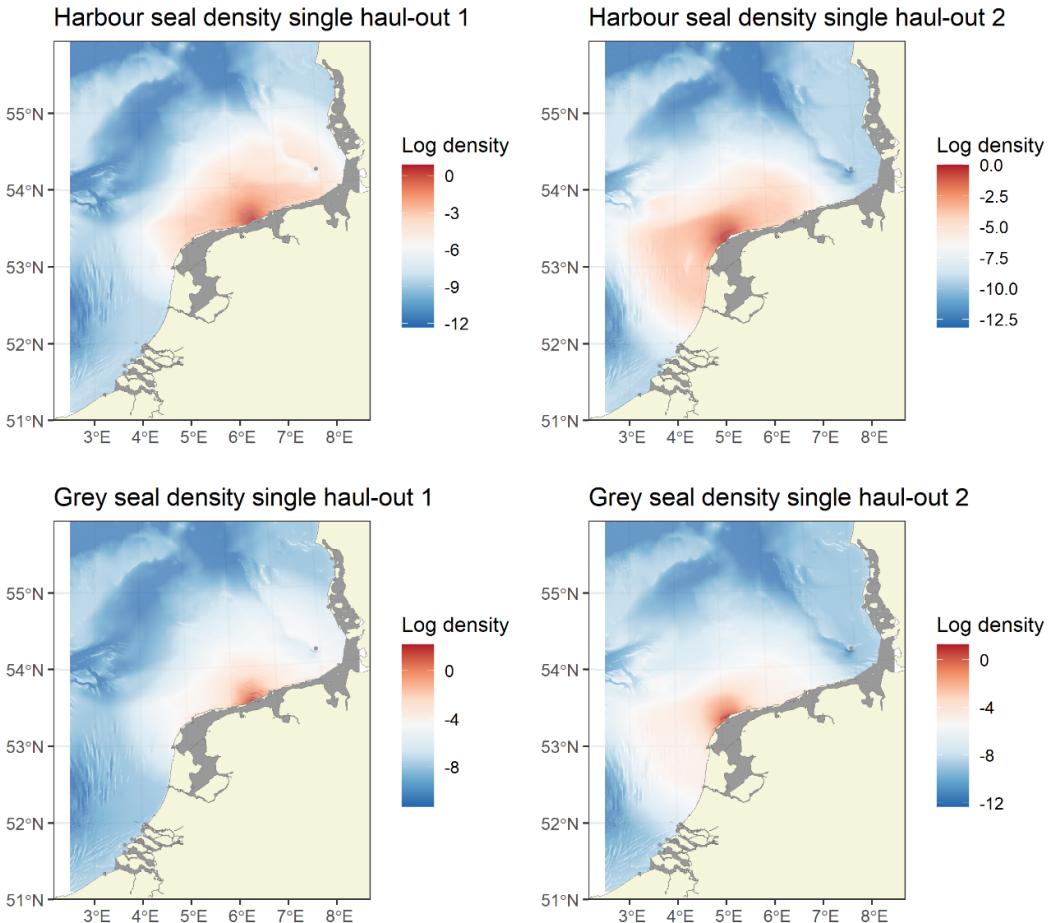
Appendix A

882


Frequency of PV trip durations

883

884


885 **Figure S1.** Frequency distribution of trip duration based on the harbour seal tracking data used
in this study.

886
887
888
889

Figure S2. Yearly and regional availability of survey data used in this study

890

891

892
893

Figure S3. Predicted density (on log-scale) of two colonies; the Razende Bol (left figure) and near Rottumeroog/Rottumerplaat (right figure).

894

895

Acknowledgements

896 First, we thank the Ministry of Economic Affairs (Ministry of EZ), Groningen Sea Port (GSP),
 897 ENECO and Gemini for funding the seal GPS transmitters used in this study. We thank the Ministry
 898 of EZ for funding the aerial surveys in the Wadden Sea and we thank the pilots, in particular Aad
 899 Droege. We thank Floor Arts and Mark Hoekstein from Deltamilieu Projecten for providing the data
 900 from the most recent seal counts in the Delta region, obtained by MWTL and funded by
 901 Rijkswaterstaat. The sediment data was kindly provided by Sytse van Heeteren and Patrick Kiden
 902 (TNO) and Jennifer Valerius (BSH). We thank everyone who assisted in the field, particularly Piet-
 903 Wim van Leeuwen, Andre Meijboom, Hans Verdaat, and the crew of the Wadden Unit. Finally, we
 904 thank RWS and Jacob Asjes, Rens Cronau and Tim Schellekens, for funding this research project
 905 and their constructive comments. All permits required to enter protected areas and handle seals
 906 during field procedures were obtained from the appropriate authorities. These included a permit
 907 under the Dutch Nature Protection Act (*Natuurbeschermingswet*) given by the Province of
 908 Friesland, a permit under the Flora and Fauna Act (*Flora en Fauna Wet*) given by the Dutch
 909 government and protocols approved by an animal ethics committee (*Dier Ethische Commissie*,
 910 DEC) of the Royal Netherlands Academy of Science (*Koninklijke Nederlandse Academie voor
 911 Wetenschappen*, KNAW).

912

Funding

913 This research is funded by the Monitoring en Onderzoek Natuurversterking en
914 Soortenbescherming (MONS) – Program of Rijkswaterstaat. This research was made possible
915 with the support of the European Union.

916

Conflict of interest disclosure

917 The authors declare that they have no financial conflicts of interest in relation to the content of
918 the article.

919

Data, scripts, code, and supplementary information availability

920 Example data are available online: [https://wozep.nl/git/wozep/04_marine_mammals-/tree/master/tagging_seals/raw_data](https://wozep.nl/git/wozep/04_marine_mammals-tree/master/tagging_seals/raw_data)
921
922

923

References

924 Aarts, G., Brasseur, S. M. J. M., & Kirkwood, R. (2018). *Behavioural response of grey seals to*
925 *pile-driving* (Wageningen Marine Research Report C006/18; p. 54). Wageningen Marine
926 Research.

927 Aarts, G., Brasseur, S., Poos, J. J., Schop, J., Kirkwood, R., van Kooten, T., Mul, E., Reijnders,
928 P., Rijnsdorp, A. D., & Tulp, I. (2019). Top-down pressure on a coastal ecosystem by
929 harbor seals. *Ecosphere*, 10(1), e02538. <https://doi.org/10.1002/ecs2.2538>

930 Aarts, G., Fieberg, J., Brasseur, S. M. J. M., & Matthiopoulos, J. (2013). Quantifying the effect of
931 habitat availability on species distributions. *Journal of Animal Ecology*, 82(6), 1135–1145.
932 <https://doi.org/10.1111/1365-2656.12061>

933 Aarts, G., MacKenzie, M., McConnell, B., Fedak, M., & Matthiopoulos, J. (2008). Estimating
934 space-use and habitat preference from wildlife telemetry data. *Ecography*, 31(1), 140–
935 160. <https://doi.org/10.1111/j.2007.0906-7590.05236.x>

936 Aarts, G., Mul, E., Fieberg, J., Brasseur, S., van Gils, J. A., Matthiopoulos, J., & Riotte-Lambert,
937 L. (2021). Individual-Level Memory Is Sufficient to Create Spatial Segregation among
938 Neighboring Colonies of Central Place Foragers. *The American Naturalist*, 198(2), E37–
939 E52. <https://doi.org/10.1086/715014>

940 Aarts, G., von Benda-Beckmann, A. M., Lucke, K., Sertlek, H. Ö., van Bemmelen, R., Geelhoed,
941 S. C. V., Brasseur, S., Scheidat, M., Lam, F.-P. A., & Slabbekoorn, H. (2016). Harbour

942 porpoise movement strategy affects cumulative number of animals acoustically exposed
943 to underwater explosions. *Marine Ecology Progress Series*, 557, 261–275.

944 Arya, S., Mount, D., Kemp, S. E., & Jefferis, G. (2019). *RANN: Fast Nearest Neighbour Search*
945 (*Wraps ANN Library*) *Using L2 Metric*. <https://CRAN.R-project.org/package=RANN>

946 Avgar, T., Betini, G. S., & Fryxell, J. M. (2020). Habitat selection patterns are density dependent
947 under the ideal free distribution. *Journal of Animal Ecology*, 89(12), 2777–2787.
948 <https://doi.org/10.1111/1365-2656.13352>

949 Bailey, H., Hammond, P. S., & Thompson, P. M. (2014). Modelling harbour seal habitat by
950 combining data from multiple tracking systems. *Journal of Experimental Marine Biology
951 and Ecology*, 450, 30–39. <https://doi.org/10.1016/j.jembe.2013.10.011>

952 Boehme, L., Thompson, D., Fedak, M., Bowen, W., Hammill, M., & Stenson, G. (2012). How
953 many seals were there? The global shelf loss during the last glacial maximum and its
954 effect on the size and distribution of grey seal populations. *PLoS One*, 7, e53000.
955 <https://doi.org/10.1371/journal.pone.0053000>

956 Bolton, M., Conolly, G., Carroll, M., Wakefield, E., & Caldow, R. (2018). A review of the
957 occurrence of inter-colony segregation of seabird foraging areas and the implications for
958 marine environmental impact assessment. *Ibis*, 161. <https://doi.org/10.1111/ibi.12677>

959 Brasseur, S. M. J. M. (2017). *Seals in motion: How movements drive population development of*
960 *harbour seals and grey seals in the North Sea* [PhD Thesis, Wageningen University &
961 Research]. <https://doi.org/10.18174/418009>

962 Brasseur, S. M. J. M., Aarts, G. M., Bravo Rebollo, E., Cremer, J. S. M., Fey-Hofstede, F. E.,
963 Geelhoed, S. C. V., Lindeboom, H. J., Lucke, K., Machiels, M. A. M., Meesters, H. W. G.,
964 Scholl, M. M., Teal, L. R., & Witte, R. H. (2011). *Zeezoogdieren in de Eems: Studie naar*
965 *de effecten van bouwactiviteiten van GSP, RWE en NUON in de Eemshaven in 2010*
966 *(herzien)*. IMARES.

967 Brasseur, S. M. J. M., & Kirkwood, R. J. (2015). *Seal monitoring and evaluation for the Gemini*
968 *offshore windpark: Pre-construction, T0—2014 report*. IMARES.

969 Brasseur, S. M. J. M., Petel, T. D. van P., Gerrodette, T., Meesters, E. H. W. G., Reijnders, P. J.
970 H., & Aarts, G. (2015). Rapid recovery of Dutch gray seal colonies fueled by immigration.
971 *Marine Mammal Science*, 31(2), 405–426. <https://doi.org/10.1111/mms.12160>

972 Brasseur, S. M. J. M., Polanen Petel, T. van, Scheidat, M., Meesters, H. W. G., Verdaat, J. P.,
973 Cremer, J. S. M., & Dijkman, E. M. (2009a). *Zeezoogdieren in de Eems: Evaluatie van de*
974 *vliegtuigtellingen van zeezoogdieren tussen oktober 2007 en september 2008.*
975 Wageningen IMARES.

976 Brasseur, S. M. J. M., Polanen Petel, T. van, Scheidat, M., Meesters, H. W. G., Verdaat, J. P.,
977 Cremer, J. S. M., & Dijkman, E. M. (2009b). *Zeezoogdieren in de Eems Evaluatie van de*
978 *Vliegtuigtellingen van zeezoogdieren tussen oktober 2007 en september 2008.* IMARES.

979 Brasseur, S. M. J. M., Polanen-Petel, T. van Geelhoed, S. C. V., Aarts, G. M., & Meesters, H. W.
980 G. (2010). Zeezoogdieren in de Eems; studie naar de effecten van bouwactiviteiten van
981 GSP, RWE en NUON in de Eemshaven in 2009. In *Report IMARES C086/10.*

982 Brasseur, S. M. J. M., Reijnders, P. J. H., Cremer, J., Meesters, E., Kirkwood, R., Jensen, L. F.,
983 Jeß, A., Galatius, A., Teilmann, J., & Aarts, G. (2018). Echoes from the past: Regional
984 variations in recovery within a harbour seal population. *PLOS ONE*, 13(1), e0189674.
985 <https://doi.org/10.1371/journal.pone.0189674>

986 Brown, C. R. (2016). The ecology and evolution of colony-size variation. *Behavioral Ecology and*
987 *Sociobiology*, 70(10), 1613–1632. <https://doi.org/10.1007/s00265-016-2196-x>

988 Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., & Thomas, L.
989 (2001). *Introduction to Distance Sampling: Estimating Abundance of Biological*
990 *Populations.* Oxford University Press.
991 <https://doi.org/10.1093/oso/9780198506492.001.0001>

992 Cairns, D. K. (1989). The regulation of seabird colony size: A hinterland model. *The American*
993 *Naturalist*, 134(1), 141–146. <https://doi.org/10.1086/284970>

994 Cowles, J. D., Henson, S. M., Hayward, J. L., & Chacko, M. W. (2013). A METHOD FOR
995 PREDICTING HARBOR SEAL (*PHOCA VITULINA*) HAULOUT AND MONITORING
996 LONG-TERM POPULATION TRENDS WITHOUT TELEMETRY. *Natural Resource*
997 *Modeling*, 26(4), 605–627. <https://doi.org/10.1111/nrm.12015>

998 Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research.

999 *InterJournal, Complex Systems*, 1695.

1000 Damseaux, F., Siebert, U., Pomeroy, P., Lepoint, G., & Das, K. (2021). Habitat and resource

1001 segregation of two sympatric seals in the North Sea. *Science of The Total Environment*,

1002 764, 142842. <https://doi.org/10.1016/j.scitotenv.2020.142842>

1003 Eguchi, T., & Harvey, J. T. (2005). Diving Behavior of the Pacific Harbor Seal (*phoca Vitulina*

1004 *Richardii*) in Monterey Bay, California. *Marine Mammal Science*, 21(2), 283–295.

1005 <https://doi.org/10.1111/j.1748-7692.2005.tb01228.x>

1006 Evans, J. S. (2020). *spatialEco*. <https://github.com/jeffreyevans/spatialEco>

1007 Fretwell, S. D., & Lucas, H. L. J. (1969). On territorial behaviour and other factors influencing

1008 habitat distribution in birds. *Acta Biotheoretica*, 19(1), 16–36.

1009 <https://doi.org/10.1007/BF01601953>

1010 Galatius, A., Brasseur, S., Hamm, T., Jeß, A., Meise, K., Meyer, J., Schop, J., Siebert, U.,

1011 Stejskal, O., Teilmann, J., & B., T. C. (2024). *Survey results of harbour seals in the*

1012 *wadden sea in 2024*. Common Wadden Sea Secretariat.

1013 Gaston, A. J., Ydenberg, R. C., & Smith, G. E. J. (2007). Ashmole's halo and population

1014 regulation in seabirds. *Marine Ornithology*, 35(2), 119–126.

1015 Geelhoed, S. C. V., Janinhoff, N., Lagerveld, S., & Verdaat, H. (2020). *Marine mammal surveys*

1016 *in Dutch North Sea waters in 2019* (C016/20; p.). Wageningen Marine Research.

1017 <https://library.wur.nl/WebQuery/wurpubs/563620>

1018 Gilles, A., Viquerat, S., Becker, E. A., Forney, K. A., Geelhoed, S. C. V., Haelters, J., Nabe-

1019 Nielsen, J., Scheidat, M., Siebert, U., Sveegaard, S., van Beest, F. M., van Bemmelen,

1020 R., & Aarts, G. (2016). Seasonal habitat-based density models for a marine top predator,

1021 the harbor porpoise, in a dynamic environment. *Ecosphere*, 7(6), e01367.

1022 <https://doi.org/10.1002/ecs2.1367>

1023 Grémillet, D., Dell'Omo, G., Ryan, P., Peters, G., Ropert-Coudert, Y., & Weeks, S. (2004).

1024 Offshore diplomacy or how seabirds mitigate intra-specific competition: A case study

1025 based on GPS tracking of Cape gannets from neighbouring colonies. *Marine Ecology*

1026 *Progress Series*, 268, 265–279. <https://doi.org/10.3354/meps268265>

1027 Harris, R. E., Miller, G. W., & Richardson, W. J. (2001). Seal responses to airgun sounds during
1028 summer seismic surveys in the Alaskan Beaufort sea. *Marine Mammal Science*, 17(4),
1029 795–812. <https://doi.org/10.1111/j.1748-7692.2001.tb01299.x>

1030 Hoekendijk, J. P. A., Grindlehner, A., Brasseur, S., Kellenberger, B., Tuia, D., & Aarts, G.
1031 (2023). Stay close, but not too close: Aerial image analysis reveals patterns of social
1032 distancing in seal colonies. *Royal Society Open Science*, 10(8), 230269.
1033 <https://doi.org/10.1098/rsos.230269>

1034 Hoekstein, M. S. J., Sluiter, M., van Straalen, K. D., & Janse, W. (2024). *Watervogels en*
1035 *zeehonden in de Zoute Delta in 2022/2023*. (Rijkswaterstaat, Centrale
1036 informatievoorziening Rapport BM 24.01. Deltamilieu Projecten Rapportnr. 2024-01.).
1037 Deltamilieu Projecten.

1038 Jansen, J. K., Boveng, P. L., Dahle, S. P., & Bengtson, J. L. (2010). Reaction of Harbor Seals to
1039 Cruise Ships. *The Journal of Wildlife Management*, 74(6), 1186–1194.
1040 <https://doi.org/10.1111/j.1937-2817.2010.tb01239.x>

1041 Jones, E. L., Hastie, G. D., Smout, S., Onoufriou, J., Merchant, N. D., Brookes, K. L., &
1042 Thompson, D. (2017). Seals and shipping: Quantifying population risk and individual
1043 exposure to vessel noise. *Journal of Applied Ecology*, 54(6), 1930–1940.
1044 <https://doi.org/10.1111/1365-2664.12911>

1045 Jones, E. L., McConnell, B. J., Smout, S., Hammond, P. S., Duck, C. D., Morris, C. D.,
1046 Thompson, D., Russell, D. J. F., Vincent, C., Cronin, M., Sharples, R. J., &
1047 Matthiopoulos, J. (2015). Patterns of space use in sympatric marine colonial predators
1048 reveal scales of spatial partitioning. *Marine Ecology Progress Series*, 534, 235–249.
1049 <https://doi.org/10.3354/meps11370>

1050 Jovani, R., Lascelles, B., Garamszegi, L. Z., Mavor, R., Thaxter, C. B., & Oro, D. (2016). Colony
1051 size and foraging range in seabirds. *Oikos*, 125(7), 968–974.
1052 <https://doi.org/10.1111/oik.02781>

1053 Kirkwood, R., Bos, O., & Brasseur, S. (2014). *Seal monitoring and evaluation for the*
1054 *Luchterduinen offshore wind farm 1. T0—2013 report*.

1055 Kirkwood, R. L., Aarts, G. M., & Brasseur, S. M. J. M. (2015). Seal monitoring and evaluation for
1056 the Luchterduinen offshore wind farm: 2. Tconstruction—2014 report. In *Report /*
1057 *IMARES C152/14*.

1058 Martins, M. C. I., Carter, M. I., Rouse, S., & Russell, D. J. (2023). Offshore energy structures in
1059 the North Sea: Past, present and future. *Marine Policy*, 152, 105629.
1060 <https://doi.org/10.1016/j.marpol.2023.105629>

1061 Matthiopoulos, J. (2003). The use of space by animals as a function of accessibility and
1062 preference. *Ecological Modelling*, 159(2–3), 239–268.

1063 Matthiopoulos, J., Fieberg, J., Aarts, G., Beyer, H. L., Morales, J. M., & Haydon, D. T. (2015).
1064 Establishing the link between habitat selection and animal population dynamics.
1065 *Ecological Monographs*, 85(3), 413–436. <https://doi.org/10.1890/14-2244.1>

1066 Matthiopoulos, J., Fieberg, J. R., & Aarts, G. (2020). *Species-Habitat Associations: Spatial data,*
1067 *predictive models, and ecological insights*. University of Minnesota Libraries Publishing.

1068 Matthiopoulos, J., Field, C., & MacLeod, R. (2019). Predicting population change from models
1069 based on habitat availability and utilization. *Proceedings of the Royal Society B:*
1070 *Biological Sciences*, 286(1901), 20182911. <https://doi.org/10.1098/rspb.2018.2911>

1071 Matthiopoulos, J., Hebblewhite, M., Aarts, G., & Fieberg, J. (2011). Generalized functional
1072 responses for species distributions. *Ecology*, 92(3), 583–589. <https://doi.org/10.1890/10-0751.1>

1073 McConnell, B. J., Fedak, M. A., & Lovell, P. (1999). Movements and foraging areas of grey seals
1074 in the North Sea. *The Journal of Applied Ecology*, 36(4), 573–590.

1075 Meesters, E. H. W. G., Reijnders, P. J. H., Brasseur, S. M. J. M., Tougaard, J., Stebe, M.,
1076 Siebert, U., & Häkkinen, T. (2007). *) An effective survey design for harbour seals in the*
1077 *Wadden Sea: Tuning Trilateral Seal Agreement and EU-Habitat Directive requirement.*

1078 Niven, H. I., Jeglinski, J. W. E., Aarts, G., Wakefield, E. D., & Matthiopoulos, J. (n.d.). Towards
1079 biologically realistic estimates of home range and spatial exposure for colonial animals.
1080 *Methods in Ecology and Evolution*, n/a(n/a). <https://doi.org/10.1111/2041-210X.70019>

1081 Patterson, A., Gilchrist, H. G., Benjaminsen, S., Bolton, M., Bonnet-Lebrun, A. S., Davoren, G.
1082 K., Descamps, S., Erikstad, K. E., Frederiksen, M., Gaston, A. J., Gulka, J., Hentati-

1084 Sundberg, J., Huffeldt, N. P., Johansen, K. L., Labansen, A. L., Linnebjerg, J. F., Love,
1085 O. P., Mallory, M. L., Merkel, F. R., ... Elliott, K. H. (2022). Foraging range scales with
1086 colony size in high-latitude seabirds. *Current Biology*, 32(17), 3800-3807.e3.
1087 <https://doi.org/10.1016/j.cub.2022.06.084>

1088 Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N. (2019). Hierarchical generalized
1089 additive models in ecology: An introduction with mgcv. *PeerJ*, 7, e6876.
1090 <https://doi.org/10.7717/peerj.6876>

1091 Reijnders, P. J. H. (1994). Historical population size of the harbour seal, *Phoca vitulina*, in the
1092 Delta area, SW Netherlands. *Hydrobiologia*, 282(1), 557–560.
1093 <https://doi.org/10.1007/BF00024655>

1094 Reijnders, P. J. H., Abt, K. F., Brasseur, S. M. J. M., Tougaard, J., Siebert, U., & Vareschi, E.
1095 (2003). Sense and sensibility in evaluating aerial counts of harbour seals in the Wadden
1096 Sea. *Wadden Sea Newsletter*, 9–12.

1097 Reijnders, P. J. H., Ries, E. H., Tougaard, J., Norgaard, N., Heidemann, G., Schwarz, J. A.,
1098 Vareschi, E., & Traut, I. M. (1997). Population development of harbour seals *Phoca*
1099 *vitulina* in the Wadden Sea after the 1988 virus epizootic. *Journal of Sea Research*,
1100 38(1–2), 161–168. [https://doi.org/10.1016/S1385-1101\(97\)00031-2](https://doi.org/10.1016/S1385-1101(97)00031-2)

1101 Reijnders, P. J. H., van Dijk, J., & Kuiper, D. (1995). Recolonization of the Dutch Wadden Sea by
1102 the grey seal *Halichoerus grypus*. *Biological Conservation*, 71(3), 231–235.
1103 [https://doi.org/10.1016/0006-3207\(94\)00032-L](https://doi.org/10.1016/0006-3207(94)00032-L)

1104 Ries, E. H., Hiby, L. R., & Reijnders, P. J. H. (1998). Maximum likelihood population size
1105 estimation of harbour seals in the Dutch Wadden Sea based on a mark-recapture
1106 experiment. *Journal of Applied Ecology*, 35(2), 332–339. [https://doi.org/10.1046/j.1365-2664.1998.00305.x](https://doi.org/10.1046/j.1365-
1107 2664.1998.00305.x)

1108 Riotte-Lambert, L., Benhamou, S., & Chamaillé-Jammes, S. (2015). How Memory-Based
1109 Movement Leads to Nonterritorial Spatial Segregation. *The American Naturalist*, 185(4),
1110 E103–E116. <https://doi.org/10.1086/680009>

1111 Robbins, J. R., Bouchet, P. J., Miller, D. L., Evans, P. G. H., Waggett, J., Ford, A. T., & Marley, S.
1112 A. (2022). Shipping in the north-east Atlantic: Identifying spatial and temporal patterns of

1113 change. *Marine Pollution Bulletin*, 179(113681).

1114 <https://doi.org/10.1016/j.marpolbul.2022.113681>

1115 Russell, D. J. F., Brasseur, S. M. J. M., Thompson, D., Hastie, G. D., Janik, V. M., Aarts, G.,

1116 McClintock, B. T., Matthiopoulos, J., Moss, S. E. W., & McConnell, B. (2014). Marine

1117 mammals trace anthropogenic structures at sea. *Current Biology: CB*, 24(14), R638–

1118 R639. <https://doi.org/10.1016/j.cub.2014.06.033>

1119 Russell, D. J. F., Hastie, G. D., Thompson, D., Janik, V. M., Hammond, P. S., Scott-Hayward, L.

1120 A. S., Matthiopoulos, J., Jones, E. L., & McConnell, B. J. (2016). Avoidance of wind farms

1121 by harbour seals is limited to pile driving activities. *Journal of Applied Ecology*.

1122 <https://doi.org/10.1111/1365-2664.12678>

1123 Santora, J., LaRue, M., & Ainley, D. (2020). Geographic structuring of Antarctic penguin

1124 populations. *Global Ecology and Biogeography*, 29. <https://doi.org/10.1111/geb.13144>

1125 Schop, J., Brasseur, S., Galatius, A., Hamm, T., Jeß, A., Meise, K., Meyer, J., Stejskal, O.,

1126 Siebert, U., Teilmann, J., & Thøstesen, C. B. (2024). *Grey seal numbers in the wadden*

1127 *sea and on helgoland in 2023-2024*. Common Wadden Sea Secretariat.

1128 [https://www.waddensea-](https://www.waddensea-worldheritage.org/sites/default/files/2024_grey%20seal%20report.pdf)

1129 [worldheritage.org/sites/default/files/2024_grey%20seal%20report.pdf](https://www.waddensea-worldheritage.org/sites/default/files/2024_grey%20seal%20report.pdf)

1130 Schultze, L. K. P., Merckelbach, L. M., Horstmann, J., Raasch, S., & Carpenter, J. R. (2020).

1131 Increased Mixing and Turbulence in the Wake of Offshore Wind Farm Foundations.

1132 *Journal of Geophysical Research: Oceans*, 125(8), e2019JC015858.

1133 <https://doi.org/10.1029/2019JC015858>

1134 Sharples, R. J., Moss, S. E., Patterson, T. A., & Hammond, P. S. (2012). Spatial Variation in

1135 Foraging Behaviour of a Marine Top Predator (*Phoca vitulina*) Determined

1136 by a Large-Scale Satellite Tagging Program. *PLoS ONE*, 7(5), e37216.

1137 Teilmann, J., Rigét, F., & Harkonen, T. (2010). Optimizing survey design for Scandinavian

1138 harbour seals: Population trend as an ecological quality element. *ICES Journal of Marine*

1139 *Science*, 67(5), 952–958. <https://doi.org/10.1093/icesjms/fsq001>

1140 Thompson, P. M., Brookes, K. L., Graham, I. M., Barton, T. R., Needham, K., Bradbury, G., &

1141 Merchant, N. D. (2013). Short-term disturbance by a commercial two-dimensional

1142 seismic survey does not lead to long-term displacement of harbour porpoises.

1143 *Proceedings of the Royal Society B-Biological Sciences*, 280(1771), 20132001.

1144 <https://doi.org/10.1098/rspb.2013.2001>

1145 Thompson, P. M., Tollit, D. J., Wood, D., Corpe, H. M., Hammond, P. S., & Mackay, A. (1997).

1146 Estimating harbour seal abundance and status in an estuarine habitat in north-east

1147 Scotland. *Journal of Applied Ecology*, 34(1), 43–52.

1148 Tollit, D. J., Black, A. D., Thompson, P. M., Mackay, A., Corpe, H. M., Wilson, B., Parijs, S. M.,

1149 Grellier, K., & Parlane, S. (1998). Variations in harbour seal *Phoca vitulina* diet and dive-

1150 depths in relation to foraging habitat. *Journal of Zoology*, 244(2), 209–222.

1151 <https://doi.org/10.1111/j.1469-7998.1998.tb00026.x>

1152 Tollit, D. J., Thompson, P. M., & Greenstreet, S. P. R. (1997). Prey selection by harbour seals,

1153 *Phoca vitulina*, in relation to variations in prey abundance. *Canadian Journal of Zoology*,

1154 75(9), 1508–1518. <https://doi.org/10.1139/z97-774>

1155 Tougaard, J., Henriksen, O. D., & Miller, L. A. (2009). Underwater noise from three types of

1156 offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals.

1157 *The Journal of the Acoustical Society of America*, 125(6), 3766–3773.

1158 <https://doi.org/10.1121/1.3117444>

1159 Vance, H. M., Hooker, S. K., Mikkelsen, L., van Neer, A., Teilmann, J., Siebert, U., & Johnson,

1160 M. (2021). Drivers and constraints on offshore foraging in harbour seals. *Scientific*

1161 *Reports*, 11(1), 6514. <https://doi.org/10.1038/s41598-021-85376-2>

1162 Vincent, C., McConnell, B. J., Delayat, S., Elder, J.-F., Gautier, G., & Ridoux, V. (2010). Winter

1163 habitat use of harbour seals (*Phoca vitulina*) fitted with Fastloc™GPS/GSM tags in two

1164 tidal bays in France. *NAMMCO Scientific Publications*, 8, 285–302.

1165 <https://doi.org/10.7557/3.2691>

1166 von Benda-Beckmann, A. M., Aarts, G. M., Sertlek, O. S., Lucke, K., Bemmelen, R. van, Wees,

1167 R. M. M. van, Verboom, W. C., Kastelein, R. A., Ketten, D. R., Lam, F.-P. A., Kirkwood,

1168 R. L., & Ainslie, M. A. (2015). Assessing the Impact of Underwater Clearance of

1169 Historical Explosives on Harbour Porpoises (*Phocoena Phocoena*) in the Southern North

1170 Sea. *Aquatic Mammals*, 41(4), 503–523.

1171 Wakefield, E. D., Bodey, T. W., Bearhop, S., Blackburn, J., Colhoun, K., Davies, R., Dwyer, R.
1172 G., Green, J. A., Grémillet, D., Jackson, A. L., Jessopp, M. J., Kane, A., Langston, R. H.
1173 W., Lescroël, A., Murray, S., Le Nuz, M., Patrick, S. C., Péron, C., Soanes, L. M., ...
1174 Hamer, K. C. (2013). Space partitioning without territoriality in gannets. *Science*,
1175 341(6141), 68–70. <https://doi.org/10.1126/science.1236077>

1176 Wakefield, E. D., Phillips, R. A., & Matthiopoulos, J. (2014). Habitat-mediated population
1177 limitation in a colonial central-place forager: The sky is not the limit for the black-browed
1178 albatross. *Proceedings of the Royal Society B: Biological Sciences*, 281(1778).
1179 <https://doi.org/10.1098/rspb.2013.2883>

1180 Wilson, L. J., & Hammond, P. S. (2016). Harbour Seal Diet Composition and Diversity. *Scottish
1181 Marine and Freshwater Science*, 7(21). <https://doi.org/10.7489/1801-1>

1182 Wyles, H. M. E., Boehme, L., Russell, D. J. F., & Carter, M. I. D. (2022). A Novel Approach to
1183 Using Seabed Geomorphology as a Predictor of Habitat Use in Highly Mobile Marine
1184 Predators: Implications for Ecology and Conservation. *Frontiers in Marine Science*, 9.
1185 <https://doi.org/10.3389/fmars.2022.818635>

1186 Xu, W., Liu, Y., Wu, W., Dong, Y., Lu, W., Liu, Y., Zhao, B., Li, H., & Yang, R. (2020).
1187 Proliferation of offshore wind farms in the North Sea and surrounding waters revealed by
1188 satellite image time series. *Renewable and Sustainable Energy Reviews*, 133, 110167.
1189 <https://doi.org/10.1016/j.rser.2020.110167>

1190